首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone acetylation/deacetylation is an important chromatin modification for epigenetic regulation of gene expression. Silent information regulation2 (Sir2)-related sirtuins are nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylases (HDAC). The mammalian sirtuin family comprises 7 members (SIRT1-7) that act in different cellular compartments to regulate metabolism and aging. The rice genome contains only two Sir2-related genes: OsSRT1 (or SRT701) and OsSRT2 (orSRT702). OsSRT1 is closely related to the mammalian SIRT6, while OsSRT2 is homologous to SIRT4. Previous work has shown that OsSRT1 is required for the safeguard against genome instability and cell damage in rice plant. In this work we investigated the role of OsSRT1 on genome-wide acetylation of histone H3 lysine 9 (H3K9ac) and studied the genome-wide binding targets of OsSRT1. The study reveals that OsSRT1 binds to loci with relatively low levels of H3K9ac and directly regulates H3K9ac and expression of many genes that are related to stress and metabolism, indicating that OsSRT1 is an important site-specific histone deacetylase for gene regulation in rice. In addition, OsSRT1 is found to also target to several families of transposable elements, suggesting that OsSRT1 is directly involved in transposable element repression.  相似文献   

2.
3.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

4.
The SIR2 homologues HST3 and HST4 have been implicated in maintenance of genome integrity in the yeast Saccharomyces cerevisiae. We find that Hst3 has NAD-dependent histone deacetylase activity in vitro and that it functions during S phase to deacetylate the core domain of histone H3 at lysine 56 (H3K56). In response to genotoxic stress, Hst3 undergoes rapid Mec1-dependent phosphorylation and is targeted for ubiquitin-mediated proteolysis, thus providing a mechanism for the previously observed checkpoint-dependent accumulation of Ac-H3K56 at sites of DNA damage. Loss of Hst3-mediated regulation of H3K56 acetylation results in a defect in the S phase DNA damage checkpoint. The pathway that regulates H3K56 acetylation acts in parallel with the Rad9 pathway to transmit a DNA damage signal from Mec1 to Rad53. We also observe that loss of Hst3 function impairs sister chromatid cohesion (SCC). Both S phase checkpoint and SCC defects are phenocopied by H3K56 point mutants. Our findings demonstrate that Hst3-regulated H3K56 acetylation safeguards genome stability by controlling the S phase DNA damage response and promoting SCC.  相似文献   

5.
6.
7.
8.
9.
10.
Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.  相似文献   

11.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

12.
Chromatin alterations, induced by covalent histone modifications, mediate a wide range of DNA-templated processes, including apoptosis. Apoptotic chromatin condensation has been causally linked to the phosphorylation of histone H2B (serine 14 in human; serine 10 in yeast, H2BS10ph) in human and yeast cells. Here, we extend these studies by demonstrating a unidirectional, crosstalk pathway between H2BS10 phosphorylation and lysine 11 acetylation (H2BK11ac) in yeast. We demonstrate that the H2BK11 acetyl mark, which exists in growing yeast, is removed upon H(2)O(2) treatment but before H2BS10ph occurs, in a unidirectional fashion. H2B K11Q mutants are resistant to cell death elicited by H(2)O(2), while H2B K11R mutants that mimic deacetylation promote cell death. Our results suggest that Hos3 HDAC deacetylates H2BK11ac, which in turn mediates H2BS10ph by Ste20 kinase. Together, these studies underscore a concerted series of enzyme reactions governing histone modifications that promote a switch from cell proliferation to cell death.  相似文献   

13.
14.
15.
Yaf9 is one of three proteins in budding yeast containing a YEATS domain. We show that Yaf9 is part of a large complex and that it coprecipitates with three known subunits of the NuA4 histone acetyltransferase. Although Esa1, the catalytic subunit of NuA4, is essential for viability, we found that yaf9 Delta mutants are viable but hypersensitive to microtubule depolymerizing agents and synthetically lethal with two different mutants of the mitotic apparatus. Microtubules depolymerized more readily in the yaf9Delta mutant compared to the wild type in the presence of nocodazole, and recovery of microtubule polymerization and cell division from limiting concentrations of nocodazole was inhibited. Two other NuA4 mutants (esa1-1851 and yng2 Delta) and nonacetylatable histone H4 mutants were also sensitive to benomyl. Furthermore, wild-type budding yeast were more resistant to benomyl when grown in the presence of trichostatin A, a histone deacetylase inhibitor. These results strongly suggest that acetylation of histone H4 by NuA4 is required for the cellular resistance to spindle stress.  相似文献   

16.
17.
18.
组蛋白乙酰化对基因表达和细胞生长非常重要.为揭示组蛋白H3K14和H4K8的乙酰化修饰对不同条件下细胞生长和Ssa3、Gal1基因表达的重要性及二者功能差异.构建了H3K14、H4K8分别突变为精氨酸的单突变株S14、S8及二者同时突变的双突变株D814,并对其在正常、高温、咖啡因存在等条件下生长及Ssa3、Gal1表达进行比较.结果表明,所有突变株对咖啡因敏感性增加;D814对温度敏感,且在供试条件下其生长及Ssa3和Gal1激活均明显慢于野生型和单突变株;除半乳糖和葡萄糖为单一碳源,30℃时两单突变株差别不大外,其它条件下S8生长及Ssa3和Gal1激活均慢于S14.表明H3K14、H4K8乙酰化对细胞生长和适应不利环境非常重要,而且在对不利条件的快速适应方面,H4K8的乙酰化修饰可能更为重要.组蛋白突变株的表型缺陷是因该条件下细胞生存所必需的基因激活延迟所致.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号