共查询到20条相似文献,搜索用时 0 毫秒
1.
Reinhard Piechocki Dagmar Kupper Ariel Quiñones Renate Langhammer 《Molecular & general genetics : MGG》1986,202(1):162-168
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA
+ dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase. 相似文献
2.
Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation. 总被引:1,自引:4,他引:1
下载免费PDF全文

DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes. 相似文献
3.
Escherichia coli cells bearing a ribosomal ambiguity mutation in rpsD have a mutator phenotype that correlates with increased mistranslation
下载免费PDF全文

Escherichia coli cells bearing certain mutations in rpsD (coding for the 30S ribosomal protein S4) show a ribosomal ambiguity (Ram) phenotype characterized by increased translational error rates. Here we show that spontaneous mutagenesis increases in Ram cells bearing the rpsD14 allele, suggesting that the recently described translational stress-induced mutagenesis pathway is activated in Ram cells. 相似文献
4.
5.
Brock JE Pourshahian S Giliberti J Limbach PA Janssen GR 《RNA (New York, N.Y.)》2008,14(10):2159-2169
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs. 相似文献
6.
Frameshift mutations induced by an Escherichia coli strain carrying a mutator gene, mutD5 总被引:4,自引:0,他引:4
We have studied eight frameshift mutations induced by the Escherichia coli mutator allele mutD5 in a derivative of the bacteriophage M13mp8, carrying an insertion of 91 base pairs derived from the tetR gene of pBR 322. All mutations were analyzed by the dideoxy sequencing method and were found to be deletions of a GC base pair which occurred in regions characterized by the presence of at least two GC base pairs. We have attempted to explain these results by the looping-out model, which was previously proposed to unify the results obtained with mutD5. 相似文献
7.
8.
9.
Davidson MB Katou Y Keszthelyi A Sing TL Xia T Ou J Vaisica JA Thevakumaran N Marjavaara L Myers CL Chabes A Shirahige K Brown GW 《The EMBO journal》2012,31(4):895-907
The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis. 相似文献
10.
Eukaryotic ribosomes harbor an ATPase activity that has been shown to be essential for translation elongation in some lower fungi. Here we report the first identification of a ribosome bound ATPase, RbbA, in E. coli cells. RbbA accounts for most of the ATPase activity associated with 70S ribosomes and 30S ribosomal subunits. Both native and recombinant RbbA were purified and shown to possess ribosome-dependent ATPase activities and to stimulate polyphenylalanine synthesis in vitro. Biochemically, RbbA is similar to the fungi-specific translation elongation factor 3 (EF-3) and cross-reacts with antibody raised against EF-3. The gene encoding RbbA is identified as ORF yhih and the predicted RbbA amino acid sequence is 40% similar to that of the C-terminal half of EF-3. The discovery of a ribosomal ATPase in a prokaryotic cell suggests a common, conserved function for these proteins in translation. 相似文献
11.
12.
13.
14.
The mutation mut-25 that results in a mutator phenotype is closely linked to purA on the chromosome of Escherichia coli. The gene order in this region is ampA mut-25 purA. purA mut-25 double mutants retained mutator activity indicating that mut-25 is not a mutation in the purA gene. The repair mutations uvrA6, recA56, and exrA1 had no effect on mutation frequencies in mut-25 strains, and mut-25 strains were normally resistant to ultraviolet irradiation. Frequencies of host range mutations were not increased in phages T1, T2, and T7 grown on mut-25 strains. mut-25 could act trans, reverting the trpA46 mutation either on the chromosome or on an F episome. The transitions AT yields GC (adenine-thymine yields guanine-cytosine) and GC yields AT were induced by mut-25. 相似文献
15.
16.
B Rydberg 《Mutation research》1978,52(1):11-24
A screening procedure based on the formation of papillae on individual bacterial colonies was used to isolate mutants of Escherichia coli with high mutation rates in the presence of bromouracil. Most of the mutants obtained had high spontaneous mutation rates and mapped close to the previously known mutators mutT, mutS, mutR, uvrE and mutL. Except for mutants of mutT type, these mutators also showed high mutability by bromouracil. Transfection experiments were performed with heteroduplex lambda DNA to test for mismatch repair. The results suggest a reduced efficiency of repair of mismatched bases in mutators mutS, mutR, uvrE and mutL, whereas mutants mapping as mutT appear normal. The results support a connection between spontaneous and bromouracil-induced mutability and repair of mismatched bases in DNA. 相似文献
17.
RecA protein of Escherichia coli has a third essential role in SOS mutator activity. 总被引:7,自引:12,他引:7
下载免费PDF全文

The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity. 相似文献
18.
Characterization of intracellular DNA strand breaks induced by neocarzinostatin in Escherichia coli cells.
下载免费PDF全文

DNA strand breaks induced by Neocarzinostatin in Escherichia coli cells have been characterized. Radioactively labeled phage lambda DNA was introduced into lysogenic host bacteria allowing the phage DNA to circularize into superhelical molecules. After drug treatment DNA single- and double-strand breaks were measured independently after neutral sucrose gradient sedimentation. The presence of alkali-labile lesions was measured in parallel in alkaline sucrose gradients. The cell envelope provided an efficient protection towards the drug, since no strand breaks were detected unless the cells were made permeable with toluene or with hypotonic Tris buffer. In permeable cells, no double strand breaks could be detected, even at high NCS concentration (100 micrograms/ml). Induction of single-strand breaks leveled off after 15 min at 20 degrees C in the presence of 2 mM mercaptoethanol. Exposure to 0.3N NaOH doubled the number of strand breaks. No enzymatic repair of the breaks could be observed. 相似文献
19.
The bacteriophage λ's cI mRNA was utilized to examine the importance of the 5'-terminal phosphate on expression of leadered and leaderless mRNA in Escherichia coli. A hammerhead ribozyme was used to produce leadered and leaderless mRNAs, in vivo and in vitro, that contain a 5'-hydroxyl. Although these mRNAs may not occur naturally in the bacterial cell, they allow for the study of the importance of the 5'-phosphorylation state in ribosome binding and translation of leadered and leaderless mRNAs. Analyses with mRNAs containing either a 5'-phosphate or a 5'-hydroxyl indicate that leaderless cI mRNA requires a 5'-phosphate for stable ribosome binding in vitro as well as expression in vivo. Ribosome-binding assays show that 30S subunits and 70S ribosomes do not bind as strongly to 5'-hydroxyl as they do to 5'-phosphate containing leaderless mRNA and the tRNA-dependent ternary complex is less stable. Additionally, filter-binding assays revealed that the 70S ternary complex formed with a leaderless mRNA containing a 5'-hydroxyl has a dissociation rate (k(off)) that is 4.5-fold higher compared with the complex formed with a 5'-phosphate leaderless mRNA. Fusion to a lacZ reporter gene revealed that leaderless cI mRNA expression with a 5'-hydroxyl was >100-fold lower than the equivalent mRNA with a 5'-phosphate. These data indicate that a 5'-phosphate is an important feature of leaderless mRNA for stable ribosome binding and expression. 相似文献
20.
Lysis of Escherichia coli cells induced by bacteriophage T4 总被引:1,自引:0,他引:1
Abstract Structural changes in the envelope of Escherichia coli cells accompanying their lysis from without by bacteriophage T4 have been studied. The hypothesis concerning the role of collapse of membrane potential and formation of periplasmic vesicles in the process of lysis from without has been advanced. 相似文献