首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Division site placement in Escherichia coli involves interactions of the MinD protein with MinC and MinE and with other MinD molecules to form membrane-associated polymeric structures. In this work, as part of a study of these interactions, we established that heterologous membrane-associated proteins such as MinD can be targeted to the yeast nuclear membrane, dependent only on the presence of a membrane-binding domain and a nuclear targeting sequence. Targeting to the nuclear membrane was equally effective using the intrinsic MinD membrane-targeting domain or the completely unrelated membrane-targeting domain of cytochrome b(5). The chimeric proteins differing in their membrane-targeting sequences were then used to establish the roles of membrane association and specificity of the membrane anchor in MinD interactions, using the yeast two-hybrid system. The chimeric proteins were also used to show that the membrane association of MinD and MinE in E. coli cells had no specificity for the membrane anchor, whereas formation of MinDE polar zones and MinE rings required the presence of the native MinD membrane-targeting sequence.  相似文献   

2.
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
We recently reported that the phospholipid composition of mouse liver microsomes could be altered in vivo by a combination of dietary choline deprivation and administration of the methylation inhibitors periodate-oxidized adenosine and cycloleucine (D.M. Boyle & W.L. Dean (1982) Biochim. Biophys. Acta 688, 667-670). We have now determined the effect of this in vivo change in phospholipid composition on 7 microsomal enzyme activities and 2 cytochromes. The specific contents of cytochromes b5 and P-450 were unaffected by the treatment. Similarly, NADH-cytochrome c reductase, cytochrome P-450 reductase, cyclohexane hydroxylase and Mg2+-ATPase were not significantly altered. In addition, the phospholipid/protein ratio was not changed. In contrast, Ca2+-ATPase and Ca2+ transport rates were reduced by more than 60%. This result suggests that the mouse liver microsomal Ca2+-ATPase is extremely sensitive to the phospholipid composition of the membrane in which it is embedded and that one mode of control of calcium metabolism in liver cells could be at the level of membrane phospholipid composition.  相似文献   

5.
Amiodarone is used extensively for the chronic treatment of life-threatening arrhythmias caused by ischemic heart disease. However, chronic therapy with this agent results in phospholipidosis in various tissues and it has been suggested that the inhibition of lysosomal phospholipase A by this drug contributes to this abnormality. Exogenous amiodarone has been shown to inhibit purified rat liver lysosomal phospholipase A1, as well as acid phospholipase activities of alveolar macrophage homogenates and those of snake venom phospholipase A2 and bacterial phospholipase C. The effects of drug treatment on heart have not been explored. The results described here demonstrate that amiodarone also significantly increases (37%, p < 0.001) phospholipid content in cat hearts. This increase is proportionately distributed to all major phospholipid classes, with the exception of sphingomyelin which appears to increase more than the others. In addition, the data also show that following amiodarone treatment, the endogenous drug levels in the heart were sufficient to reduce in vitro losses of membrane phospholipid at 37°C by inhibiting a variety of endogenous phospholipases at physiological (7.4), ischemic (6.2) and acidic (5.0) pH values. This protection is more pronounced at acidic pH values than at physiological pH. Endogenous amiodarone also affects myocardial phospholipase activities towards exogenous phosphatidylcholine and again the extent of inhibition is more at acidic pH. These results suggest that amiodarone induces phospholipidosis in the heart by inhibiting phospholipid catabolism and that its antiarrhythmic properties may reside in its ability to modulate alkaline, neutral and acid phospholipase activities in ischemia. To what extent amiodarone metabolites (desethylamiodarone and bis-desethylamiodarone) are involved in these actions remains to be determined.  相似文献   

6.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

7.
8.
Administration of the methylation inhibitor periodate-oxidized adenosine to male Swiss-Webster mice on a choline-deficient diet produced a decrease (17%) in phosphatidylcholine to phosphatidylethanolamine ratios compared to saline-injected controls in liver, and also in kidney (11%), but not in muscle microsome preparations. Both intact liver microsomes and reconstituted membranes from lipid extracts showed a higher fluorescence anisotropy of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene than control samples in the temperature range of 20–31°C.  相似文献   

9.
In vitro and in vivo assessment of herb drug interactions   总被引:3,自引:0,他引:3  
Herbal products contain several chemicals that are metabolized by phase 1 and phase 2 pathways and also serve as substrates for certain transporters. Due to their interaction with these enzymes and transporters there is a potential for alteration in the activity of drug metabolizing enzymes and transporters in presence of herbal components. Induction and inhibition of drug metabolizing enzymes and transporters by herbal component has been documented in several in vitro studies. While these studies offer a system to determine the potential for a herbal component to alter the pharmacokinetics of a drug, they cannot always be used to predict the magnitude of any potential effect in vivo. In vivo studies are the ultimate way to determine the clinical importance of herb drug interactions. However, lack of content uniformity and lack of documentation of the bioavailability of herbal components makes even in vivo human studies difficult to interpret as the effect may be product specific. It appears that St. John's wort extract is probably one of the most important herbal product that increases the metabolism and decreases the efficacy of several drugs. Milk thistle on the other hand appears to have minimal effect on phase 1 pathways and limited data exists for phase 2 pathways and transporter activity in vivo. Further systematic studies are necessary to assess the significance of herb drug interactions.  相似文献   

10.
11.
12.
Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg(2+), whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide.  相似文献   

13.
14.
15.
16.
We describe a coculture model of a human intestinal epithelial cell line and human peripheral blood monocytes in which monocytes differentiate into cells with features of resident intestinal macrophages. Caco-2 cells are grown on the lower surface of a semipermeable filter with pore size of 3 μm (Transwells®) until they differentiate into enterocytes. Peripheral-blood monocytes are added and the co-culture incubated for two days. Monocytes migrate through the pores of the membrane, come into direct contact with the basolateral surfaces of the epithelial cell monolayer, and develop characteristics of resident intestinal macrophages including downregulation of CD14 expression and reduced pro-inflammatory cytokine responses (IL-8, TNF and IL-1β) to bacterial products. The apical application of lipopolysaccharide (LPS) and muramyl dipeptide (MDP) resulted in an increased number of integrated monocytes, but abrogated the downregulation of CD14 expression and the diminished cytokine responses. MDP also reduced tight-junctional integrity, whilst LPS had no effect. These data indicate that LPS and MDP have significant pathophysiological effects on enterocyte–monocyte interactions, and confirm other studies that demonstrate that enterocytes and their products influence monocyte differentiation. This model may be useful in providing insights into the interaction between monocytes, epithelial cells and intestinal bacteria in health and disease.  相似文献   

17.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

18.
The identification and characterization of protein interactions is a key topic in current life science research; a huge variety of methodologies have been established in recent years to expedite research in this area. Generic methods have been established for monitoring protein interactions in vivo by protein fragment complementation and for screening protein interactions in vitro by highly parallel solid-phase techniques. Substantial progress has been made in identifying and characterizing interactions with and between membrane proteins. Studying protein interactions on the single-molecule level has become an important tool for understanding protein function in vivo and in vitro.  相似文献   

19.
Crooke E 《Biochimie》2001,83(1):19-23
DNA replication in Escherichia coli is controlled at the initiation stage, possibly by regulation of the essential activity of DnaA protein. The cellular membrane has long been hypothesized to be involved in chromosomal replication. Accumulating evidence, both in vitro and in vivo, that supports the importance of membrane phospholipids influencing the initiation activity of DnaA is reviewed.  相似文献   

20.
Administration of betamethasone (0.2 mg/kg, intramuscularly) to pregnant rabbits had the following effects on the fetal lung at 26–27 days gestation. It increased the amount of phosphatidylcholine in lung lavage by 70% and almost doubled the phosphatidylcholine/sphingomyelin ratio, it increased the rate of incorporation of choline into phosphatidylcholine in fetal lung slices by up to 90%, it increased the activities of pulmonary cholinephosphate cytidylyltransferase and phosphatidate phosphatase by 50% and it reduced the amount of lung glycogen to 60% of the amount in the controls. Betamethasone had no effect on the activities of pulmonary cholinephosphotransferase or lysolecithin: lysolecithin acyltransferase but it sligthly decreased the activity of choline kinase.Betamethasone administration to the doe did not increase the amount of surfactant phospholipid in fetal lung lavage to as great an extent as did direct administration of cortisol to the fetuses. Neither did betamethasone stimulate the activity of pulmonary cholinephosphotransferase. These data suggest that agents other than glucocorticoids mediate the stress-induced acceleration of fetal lung maturation and surfactant production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号