首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of L-[3H]carnitine and acetyl-L-[3H]carnitine at the blood-brain barrier (BBB) was examined by using in vivo and in vitro models. In vivo brain uptake of acetyl-L-[3H]carnitine, determined by a rat brain perfusion technique, was decreased in the presence of unlabeled acetyl-L-carnitine and in the absence of sodium ions. Similar transport properties for L-[3H]carnitine and/or acetyl-L-[3H]carnitine were observed in primary cultured brain capillary endothelial cells (BCECs) of rat, mouse, human, porcine and bovine, and immortalized rat BCECs, RBEC1. Uptakes of L-[3H]carnitine and acetyl-L-[3H]carnitine by RBEC1 were sodium ion-dependent, saturable with K(m) values of 33.1 +/- 11.4 microM and 31.3 +/- 11.6 microM, respectively, and inhibited by carnitine analogs. These transport properties are consistent with those of carnitine transport by OCTN2. OCTN2 was confirmed to be expressed in rat and human BCECs by an RT-PCR method. Furthermore, the uptake of acetyl-L-[3H]carnitine by the BCECs of juvenile visceral steatosis (jvs) mouse, in which OCTN2 is functionally defective owing to a genetical missense mutation of one amino acid residue, was reduced. The brain distributions of L-[3H]carnitine and acetyl-L-[3H]carnitine in jvs mice were slightly lower than those of wild-type mice at 4 h after intravenous administration. These results suggest that OCTN2 is involved in transport of L-carnitine and acetyl-L-carnitine from the circulating blood to the brain across the BBB.  相似文献   

2.
The process by which L- and D-carnitine are absorbed was investigated using the live rat and the isolated vascularly perfused intestine. A lumenal dose of 2-6 nmol in the perfused intestine resulted in less than 5% transport of either isomer to the perfusate in 30 min. The L-isomer was taken up by the intestinal tissue about twice as rapidly as the D-isomer by both the perfused intestine (52.8% and 21.6%, respectively) and the live animal (80% and 50%, respectively) in 30 min. After 1 h 90% of the L-carnitine had accumulated in the intestinal tissue and was released to the circulation over the next several hours. Accumulation of D-carnitine reached a maximum of 80% in 2 h and release to the circulations was similar to that of L-carnitine. Uptake of both L-[14C]carnitine and acetyl-L-[14C]carnitine was more rapid in the upper jejunal segment than in other portions of the small intestine. Acetylation occurred in all segments, resulting in nearly 50% conversion to this derivative in 5 min. Increasing the dose of L-carnitine reduced the percent acetylation. The uptake of both isomers was a saturable process and high concentrations of D-carnitine, acetyl-L-carnitine and trimethylaminobutyrate inhibited L-carnitine uptake. In the live animal after 5 h, the distribution of isotope from L-[14C]carnitine and D-[3H]carnitine differed primarily in the muscle where 29.5% of the L-carnitine and 5.3% of the D-carnitine was found and in the urine where 2.9% of the L-carnitine and 7.1% of the D-carnitine was found. The renal threshold for L-carnitine was 80 microM and for D-carnitine 30 microM, in the isolated perfused kidney. Approx. 40% of the L-carnitine but none of the D-carnitine excreted in the urine was acetylated. L-Carnitine and D-carnitine competed for tubular reabsorption.  相似文献   

3.
4.
This work shows that butyrobetaine administered to rats in a single dose can be highly effective in elevating L-carnitine levels in all tissues. This ability of butyrobetaine was compared to that of L-carnitine. In an experiment with tracer dose of the compounds, 12 h following administration of [3H]butyrobetaine plasma and tissues contained radioactivity exclusively in L-carnitine and in similar amounts as in the other group of animals receiving L-[3H]carnitine. This was observed both after intraperitoneal and oral administration of the compounds. In the loading experiments 100 mumol [3H]butyrobetaine was administered orally to one group and 100 mumol L-[3H]carnitine to the other group of animals and 12 h later it was found that butyrobetaine caused the same increments in L-carnitine as L-carnitine administration. The increments in the organs of the butyrobetaine-treated group (in decreasing order) were as follows: kidney, 1227 nmol/g vs. 652 nmol/g; liver, 469 nmol/g vs. 258 nmol/g; muscle, 1043 nmol/g vs. 881 nmol/g; plasma, 79.4 nmol/ml vs. 39.3 nmol/ml. Butyrobetaine (100 mumol) caused similar increments when it was administered intraperitoneally. Based on these results butyrobetaine can be considered as a potential agent for L-carnitine supplementation therapy.  相似文献   

5.
The mechanism of Na(+)-dependent transport of L-carnitine via the carnitine/organic cation transporter OCTN2 and the subcellular localization of OCTN2 in kidney were studied. Using plasma membrane vesicles prepared from HEK293 cells that were stably transfected with human OCTN2, transport of L-carnitine via human OCTN2 was characterized. Uptake of L-[(3)H]carnitine by the OCTN2-expressing membrane vesicles was significantly increased in the presence of an inwardly directed Na(+) gradient, with an overshoot, while such transient uphill transport was not observed in membrane vesicles from cells that were mock transfected with expression vector pcDNA3 alone. The uptake of L-[(3)H]carnitine was specifically dependent on Na(+) and the osmolarity effect showed that Na(+) significantly influenced the transport rather than the binding. Changes of inorganic anions in the extravesicular medium and of membrane potential by valinomycin altered the initial uptake activity of L-carnitine by OCTN2. In addition, the fluxes of L-carnitine and Na(+) were coupled with 1:1 stoichiometry. Accordingly, it was clarified that Na(+) is coupled with flux of L-carnitine and the flux is an electrogenic process. Furthermore, OCTN2 was localized on the apical membrane of renal tubular epithelial cells. These results clarified that OCTN2 is important for the concentrative reabsorption of L-carnitine after glomerular filtration in the kidney.  相似文献   

6.
L-Carnitine transport and free fatty acid oxidation have been studied in hearts of rats with 3-month-old aorto-caval fistula. For carnitine transport experiments, the hearts were perfused via the ascending aorta with a bicarbonate buffer containing 11 mM glucose and variable concentrations L-[14C]carnitine (10-200 microM). In some experiments, the active component of carnitine transport was suppressed by the adjunction of 0.05 mM mersalyl acid. The subtraction of passive from total transport allowed reconstruction of the saturation curves of the carrier-mediated transport of L-carnitine. Our data suggest that at a physiological carnitine concentration (50 microM), the rate of [14C]carnitine accumulation was significantly depressed in mechanically overloaded hearts. In addition, according to Lineweaver-Burk analysis, the affinity of the membrane carrier for L-carnitine was considerably diminished (Km carnitine 125 instead of 83 microM, Vmax unchanged). The above alterations of L-carnitine transport did not result from a decrease of the transmembrane gradient of sodium, since the intracellular Na+ content of the hypertrophied hearts was quite similar to that of control hearts. The ability of atrially perfused, working hearts to oxidize the exogenous free fatty acids was assessed from 14CO2 production obtained in the presence of [U-14C]palmitate or [1-14C]octanoate. The total 14CO2 production, expressed per min per g dry weight, was significantly diminished in hearts from rats with the aorto-caval fistula if 1.2 mM palmitate was used. On the other hand, in the presence of 2.4 mM octanoate, a substrate which circumvents the carnitine-acylcarnitine translocase, no such reduction of the 14CO2 production could be detected. Our results suggest that the decrease of L-carnitine transport, resulting in a significant depression of tissue carnitine, may impair long-chain fatty acid activation and/or translocation into mitochondria. In contrast, the oxidation of short-chain fatty acids, the activation of which takes place directly in mitochondrial matrix, is not limited in volume-overloaded hearts.  相似文献   

7.
Uptake and metabolism of L-carnitine, D-carnitine and acetyl-L-carnitine were studied utilizing isolated guinea-pig enterocytes. Uptake of the D- and L-isomers of carnitine was temperature dependent. Uptake of L-[14C]carnitine by jejunal cells was sodium dependent since replacement by lithium, potassium or choline greatly reduced uptake. L- and D-carnitine developed intracellular to extracellular concentration gradients for total carnitine (free plus acetylated) of 2.7 and 1.4, respectively. However, acetylation of L-carnitine accounted almost entirely for the difference between uptake of L- and D-carnitine. About 60% of the intracellular label was acetyl-L-carnitine after 30 min, and the remainder was free L-carnitine. No other products were observed. D-Carnitine was not metabolized. Acetyl-L-carnitine was deacetylated during or immediately after uptake into intestinal cells and a portion of this newly formed intracellular free carnitine was apparently reacetylated. L-Carnitine and D-carnitine transport (after adjustment for metabolism and diffusion) were evaluated over a concentration range of 2-1000 microM. Km values of 6-7 microM and 5 microM, were estimated for L- and D-carnitine, respectively. Ileal-cell uptake was about half that found for jejunal cells, but the labeled intracellular acetylcarnitine-to-carnitine ratios were similar for both cell populations. Carnitine transport by guinea-pig enterocytes demonstrate characteristics of a carrier-mediated process since it was inhibited by D-carnitine and trimethylaminobutyrate, as well as being temperature and concentration dependent. The process appears to be facilitated diffusion rather than active transport since L-carnitine did not develop a significant concentration gradient, and was unaffected by ouabain or actinomycin A.  相似文献   

8.
The product distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen (49% of the enzymatic products), [1(R)-(2)H]-DHAP from isomerization with incorporation of deuterium from D(2)O into C-1 of DHAP (31% of the enzymatic products), and [2(R)-(2)H]-GAP from incorporation of deuterium from D(2)O into C-2 of GAP (21% of the enzymatic products). The similar yields of [1(R)-(2)H]-DHAP and [2(R)-(2)H]-GAP from partitioning of the enzyme-bound enediol(ate) intermediate between hydron transfer to C-1 and C-2 is consistent with earlier results, which showed that there are similar barriers for conversion of this intermediate to the alpha-hydroxy ketone and aldehyde products (Knowles, J. R., and Albery, W. J. (1977) Acc. Chem. Res. 10, 105-111). However, the observation that the TIM-catalyzed isomerization of GAP in D(2)O proceeds with 49% intramolecular transfer of the (1)H label from substrate to product DHAP stands in sharp contrast with the 相似文献   

9.
L-Carnitine dissimilation in the gastrointestinal tract of the rat   总被引:1,自引:0,他引:1  
Results of previous studies in this laboratory and others have suggested that L-carnitine is degraded in the gastrointestinal tract of the rat, perhaps by the action of indigenous flora. L-[methyl-14C]Carnitine was administered to rats either orally or intravenously in doses of 86 nmol or 124 mumol, and expired air, 48-h urine and fecal collections, and selected tissues at 48 h after isotope administration were examined for radiolabeled carnitine and metabolites. Urine and feces of rats receiving oral L-[methyl-14C]carnitine consistently contained two radiolabeled metabolites which were identified as trimethylamine N-oxide (primarily in urine) and gamma-butyrobetaine (primarily in feces). In these rats, these metabolites accounted for up to 23% and 31% of the administered dose, respectively. By contrast, for rats receiving intravenous L-[methyl-14C]carnitine or germ-free rats receiving the isotope orally or intravenously, virtually all of the radioactivity recovered was in the form of carnitine. Analyses for 14CO2 and [14C]trimethylamine in expired air revealed little or no (less than 0.1% of dose) conversion to these compounds, regardless of size of dose or route of administration. Results of this study demonstrate conclusively that L-carnitine is degraded in the gastrointestinal tract of the rat and that indigenous flora are responsible for these transformations.  相似文献   

10.
The product distributions for the reactions of dihydroxyacetone phosphate (DHAP) in D(2)O at pD 7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the first-formed products of the thermodynamically unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-GAP). Three products were observed from the reactions catalyzed by TIM: GAP from isomerization with intramolecular transfer of hydrogen (18% of the enzymatic products), d-GAP from isomerization with incorporation of deuterium from D(2)O into C-2 of GAP (43% of the enzymatic products), and [1(R)-(2)H]-DHAP (d-DHAP) from incorporation of deuterium from D(2)O into C-1 of DHAP (40% of the enzymatic products). The ratios of the yields of the deuterium-labeled products d-DHAP and d-GAP from partitioning of the intermediate of the TIM-catalyzed reactions of GAP and DHAP in D(2)O are 1.48 and 0.93, respectively. This provides evidence that the reaction of these two substrates does not proceed through a single, common, reaction intermediate but, rather, through distinct intermediates that differ in the bonding and arrangement of catalytic residues at the enediolate O-1 and O-2 oxyanions formed on deprotonation of GAP and DHAP, respectively.  相似文献   

11.
The Uptake of Carnitine by Slices of Rat Cerebral Cortex   总被引:5,自引:3,他引:2  
Abstract: The properties of carnitine transport were studied in rat brain slices. A rapid uptake system for carnitine was observed, with tissue-medium gradients of 38 ± 3 for L-[14CH3]carnitine and 27 ± 3 for D-[14CH3]carnitine after 180 min incubation at 37°C in 0.64 mM substrate. Uptake of L- and D-carnitine showed saturability. The estimated values of K m for L- and D-carnitine were 2.85 mM and 10.0 mM, respectively; but values of V max (1 μmol/min/ml in-tracellular fluid) were the same for the two isomers. The transport system showed stereospecificity for L-carnitine. Carnitine uptake was inhibited by structurally related compounds with a four-carbon backbone containing a terminal carboxyl group. L-Carnitine uptake was competitively inhibited by γ-butyrobetaine ( K i= 3.22 mM), acetylcarnitine ( K i= 6.36 mM), and γ-aminobutyric acid ( K i= 0.63 mM). The data suggest that carnitine and γ-aminobutyric acid interact at a common carrier site. Transport was not significantly reduced by choline or lysine. Carnitine uptake was inhibited by an N2 atmosphere, 2,4-dinitrophenol, carbonylcyanide- N -chlorophenylhydrazone, potassium cyanide, n-ethylmaleimide, and ouabain. Transport was abolished by low temperature (4°C) and absence of glucose from the medium. Carnitine uptake was Na+-dependent, but did not require K+ or Ca2+.  相似文献   

12.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

13.
R T Jiang  Y J Shyy  M D Tsai 《Biochemistry》1984,23(8):1661-1667
Separate diastereomers of 1,2-dipalmitoyl-sn-glycero-3- thiophosphoethanolamine ( DPPsE ) were prepared in 97% diastereomeric purity and characterized by 31P, 13C, and 1H nuclear magnetic resonance (NMR). The isomers hydrolyzed by phospholipases A2 and C specifically were designated as isomer B (31P NMR delta 59.13 in CDCl3 + Et3N ) and isomer A (59.29 ppm), respectively, analogous to the isomers B and A of 1,2-dipalmitoyl-sn-glycero-3- thiophosphocholine ( DPPsC ) [ Bruzik , K., Jiang , R.-T., & Tsai, M.-D. (1983) Biochemistry 22, 2478-2486]. Phospholipase D from cabbage was shown to be specific to isomer A of DPPsC in transphosphatidylation . The product DPPsE was shown to be isomer A. The absolute configuration of chiral DPPsE at phosphorus was elucidated by bromine-mediated desulfurization in H2 18O to give chiral 1,2-dipalmitoyl-sn-glycero-3-[18O]phosphoethanolamine ( [18O]DPPE) followed by 31 P NMR analysis [ Bruzik , K., & Tsai, M.-D. (1984) J. Am. Chem. Soc. 106, 747-754]. The absolute configuration of chiral DPPsC was elucidated by desulfurization in H2 18O mediated by bromine or cyanogen bromide to give chiral 1,2-dipalmitoyl-sn-glycero-3-[18O]phosphocholine ( [18O]DPPC), which was then converted to [18O]DPPE by phospholipase D with retention of configuration [ Bruzik , K., & Tsai, M.-D. (1984) Biochemistry (preceding paper in this issue)]. The results indicate that isomer A of both DPPsE and DPPsC is SP whereas isomer B is RP.  相似文献   

14.
An equilibrium mixture of highly enriched [18(O)]Pi (represents the mixture of [[18(O)4]Pi, [[18(O)3]Pi, [18(O)2]Pi as represented in the figures, unless otherwise specified), alpha-D-ribose 1-[16(O)]phosphate, and hypoxanthine plus inosine was equilibrated with calf spleen purine-nucleoside phosphorylase (EC 2.4.2.1). The 31P NMR spectrum clearly indicated the formation of alpha-D-ribose 1-[18(O)4]-phosphate and of [16(O)]Pi. Incubation for the same time span in the absence of alpha-D-ribose 1-phosphate left the [18(O)4]Pi isotopic distribution unchanged. The results clearly demonstrated that the C--O bond of alpha-D-ribose 1-phosphate is cleaved in the enzymatic reaction. It is unlikely that the enzyme catalyzes the exchange of oxygen between Pi and H2O. Several possible mechanistic pathways are ruled out by the results, which demand attack by a phosphate oxygen at the anomeric C-1' atom.  相似文献   

15.
Prednisolone (10(-8)--10(-5) mol/l) in the growth medium for 24 h increased the rate of uptake of L-[3H]carnitine in an established cell line (CCL 27) to 164 +/- 6% (mean +/-S.E.) of the rate observed in untreated cells. At the same time the intracellular content of free L-carnitine increased about 20%. The simultaneous addition of prednisolone (10(-6) mol/l for 24 h) and L-carnitine (10(-4) mol/l for 96 h) to the growth medium increased the rate of uptake to 225 +/- 8% (mean +/-S.E.) of that in untreated cells. The increase seemed to be mediated through an increase in number of carriers, as judged by the increase in V of the transport process with unchanged Km. Phosphodiesterase I, an enzyme mainly localized in the plasma membrane, increased its activity about 3.5 times when cells were stimulated with prednisolone. Thus, it seems that the increase in the rate of uptake of L-carnitine mediated by glucocorticoids, is part of a more general effect on the plasma membrane. The observations offer an explanation to the observed clinical improvement in patients with muscular carnitine deficiency treated with glucocorticoids and/or L-carnitine.  相似文献   

16.
The preparation of leucine and isoleucine labeled with 15N and of site-specific 13C-labeled isoleucines is described. This method is based on the induction of the biosynthetic pathways specific for branched chain amino acids in glutamic acid producing bacteria, and controlled provision of stable isotope labeled precursors. Corynebacterium glutamicum (ATCC 13032), a glutamic acid overproducer, was incubated in leucine production medium which consisted of a basal medium supplemented with [15N]ammonium sulfate, glucose, and sodium alpha-ketoisocaproate. production of L-[15N]leucine reached 138 mumol/ml at an isotopic efficiency of 90%. It was purified and checked by proton NMR and GC-MS. The electron impact (EI) spectrum showed 95 atom% enrichment. The cultivation of C. glutamicum in a similar medium containing alpha-ketobutyrate yielded L-[15N]isoleucine at a concentration of 120 mumol/ml. The GC-MS EI and chemical ionization (CI) spectra confirmed enrichment of 96 atom% 15N as that of the labeled precursors. The biosynthesis of L-[13C]isoleucine was carried out by induced cells which were transferred to a similar medium in which [2-13C]- or [3-13C]pyruvic acid replaced glucose. 13C NMR of the product isoleucine revealed single-site enrichment at C-3 or at C-3' respective to the precursor [13C]pyruvate; i.e., C-3 was labeled from [2-13C]pyruvate and C-3' from [3-13C]pyruvate. Mass spectrometric analysis confirmed that all molecules were labeled only in one carbon. This site-specific incorporation of [13C]pyruvate is contrasted with the labeling pattern obtained when producing cells were supplied with [2-13C]acetate, instead of pyruvate, when most label was incorporated into carbons 3 and 3' of the same isoleucine molecule.  相似文献   

17.
Recent studies have suggested that parts of the hepatic activities of diacylglycerol acyltransferase and acyl cholesterol acyltransferase are expressed in the lumen of the endoplasmic reticulum (ER). However the ER membrane is impermeable to the long-chain fatty acyl-CoA substrates of these enzymes. Liver microsomal vesicles that were shown to be at least 95% impermeable to palmitoyl-CoA were used to demonstrate the membrane transport of palmitoylcarnitine and free L-carnitine - processes that are necessary for an indirect route of provision of ER luminal fatty acyl-CoA through a luminal carnitine acyltransferase (CAT). Experimental conditions and precautions were established to permit measurement of the transport of [14C]palmitoylcarnitine into microsomes through the use of the luminal CAT and acyl-CoA:ethanol acyltransferase as a reporter system to detect formation of luminal [14C]palmitoyl-CoA. Rapid, unidirectional transport of free L-[3H]carnitine by microsomes was measured directly. This process, mediated either by a channel or a carrier, was inhibited by mersalyl but not by N-ethylmaleimide or sulfobetaine - properties that differentiate it from the mitochondrial inner membrane carnitine/acylcarnitine exchange carrier. These findings are relevant to the understanding of processes for the reassembly of triacylglycerols that lipidate very low density lipoprotein particles as part of a hepatic triacylglycerol lipolysis/re-esterification cycle.  相似文献   

18.
Crystalline Aspergillus niger alpha-glucosidase and highly purified preparations of rice alpha-glucosidase II and Trichoderma reesei trehalase were found to catalyze the hydration of [2-(2)H]-D-gluco-octenitol, i.e., (Z)-3,7-anhydro-1,2-dideoxy-[2-2H]-D-gluco-oct-2-enitol, to yield 1,2-dideoxy-[2-2H]-D-gluco-octulose. In each case, the stereochemistry of the reaction was elucidated by examining the newly formed centers of asymmetry at C-2 and C-3 of the hydration product. The C-1 to C-3 fragment of each isolated [2-2H]-D-gluco-octulose product was recovered as [2-2H]propionic acid and identified by its positive optical rotatory dispersion as the S isomer, showing that each enzyme had protonated the octenitol (at C-2) from above its re face. 1H NMR spectra of enzyme/D-gluco-octenitol digests in D2O showed that the alpha-anomer of [2-2H]-D-gluco-octulose was exclusively produced by each alpha-glucosidase, whereas the beta-anomer was formed by action of the trehalase. The trans hydration catalyzed by the alpha-glucosidases was found to be very strongly inhibited by the substrate; the cis hydration reaction catalyzed by the trehalase showed no such inhibition. Special importance is attached to the finding that in hydrating octenitol each enzyme creates a product of the same anomeric form as in hydrolyzing an alpha-D-glucosidic substrate. This result adds substantially to the growing evidence that individual glycosylases create the configuration of their reaction products by a means that is independent of donor substrate configuration, that is, by a means other than "retaining" or "inverting" substrate configuration.  相似文献   

19.
Deuterium NMR is used to study the structure and dynamics of the formyl C-2H bond in selectively deuterated gramicidin molecules. Specifically, the functionally different analogues 2HCO-Val1...gramicidin A and 2HCO-Val1-D-Leu2...gramicidin A are studied by 2H NMR so that any conformational or dynamical differences between the two analogues can be correlated with their difference in lifetime. These analogues are first synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorous NMR line shapes obtained from these samples are consistent with the presence of the bilayer phase and indicate that the disorder exhibited by the lipid matrix is approximately of the same type and degree for both analogues. Deuterium NMR line shapes obtained from these samples indicate that the motional axis of the formyl group of gramicidin is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 7-9 degrees, and that a similar, major conformational and dynamical state exists for the formyl C-2H bond of both analogues. In this state, if the only motion present is fast axial rotation, then the experimentally derived angle between the formyl C-2H bond and the motional axis is consistent with the presence of a right-handed, single-stranded, beta 6.3 helical dimer but is not consistent with the presence of a left-handed, single-stranded, beta 6.3 helical dimer. However, if fast axial rotation is not the only motion present, then the left-handed, single-stranded, beta 6.3 helical dimer cannot be absolutely excluded as a possibility. Also, a second, minor conformational and dynamical state appears to be present in the spectrum of 2HCO-Val1-D-Leu2...gramicidin A but is not observed in the spectrum of 2HCO-Val1...gramicidin A. This minor conformational and dynamical state may reflect the presence of monomers, while the major conformational and dynamical state may reflect the presence of dimers.  相似文献   

20.
Dehydroacaterin reductase is an enzyme which catalyzes the final step of acaterin biosynthesis, that is, the reduction of the C-4/C-5 double bond of dehydroacaterin. The mechanism of the reduction was investigated with a cell-free preparation obtained from the acaterin-producing microorganism, Pseudomonas sp. A 92. Incubation of dehydroacaterin in the presence of [4,4- 2H2]NADPH or D2O followed by 2H NMR analysis of the resulting acaterin revealed that the deuterium atom from NADPH was incorporated into the C-5 position of acaterin, while the deuterium atom from D2O was introduced into the C-4 position. It was further demonstrated that the pro-R hydrogen at C-4 of NADPH was stereospecifically utilized in this reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号