首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

2.
The actions of serotonin (5-HT) and its putative agonists and antagonists were examined in vitro on hippocampal CA1 neurons using intracellular recordings, demonstrating that the cellular pharmacological effects can not necessarily be predicted from binding characteristics alone. The first response following 5-HT application was often a long-lasting (several minutes) hyperpolarization associated with decreased input resistance. Subsequent 5-HT applications caused only brief hyperpolarizations (30-120 s) and associated decreased input resistance, often followed by membrane depolarization. The post-spike train afterhyperpolarization (AHP) was prolonged for several minutes following the 5-HT induced hyperpolarization. 5-HT1 agonists (8-hydroxy-2-(di-n-propylamino)tetralin, 5-methoxytryptamine, MK-212) caused a prolonged hyperpolarization, decreased input resistance, and enhancement of the AHP. 5-HT applied following agonist application elicited only short-lasting hyperpolarizations. The 5-HT2 antagonists, cyproheptadine and mianserin, and a nonspecific 5-HT antagonist, methysergide, also caused a prolonged hyperpolarization with decreased input resistance. Spiperone, a nonspecific 5-HT antagonist, and ritanserin, a putative specific 5-HT2 receptor antagonist, depolarized CA1 neurons with little or no change in input resistance. The 5-HT-induced short-lasting hyperpolarization was not affected by drop application of 5-HT antagonists, except for methysergide, but perfusion of methysergide, ritanserin, and spiperone attenuated this response. The long-lasting 5-HT hyperpolarization might be mediated by 5-HT1A receptor activation, and the short-lasting hyperpolarization by another serotonergic receptor subtype.  相似文献   

3.
Structure and functional expression of cloned rat serotonin 5HT-2 receptor.   总被引:28,自引:5,他引:23  
A complementary DNA (cDNA) encoding a serotonin receptor with 51% sequence identity to the 5HT-1C subtype was isolated from a rat brain cDNA library by homology screening. Transient expression of the cloned cDNA in mammalian cells was used to establish the pharmacological profile of the encoded receptor polypeptide. Membranes from transfected cells showed high-affinity binding of the serotonin antagonists spiperone, ketanserin and mianserin, low affinity for haloperidol (a dopamine D2 receptor antagonist), 8-OH-DPAT as well as MDL-72222 and no detectable binding of [3H]serotonin. This profile is consonant with the 5HT-2 subtype of serotonin receptors. In agreement with this assignment, serotonin increased the intracellular Ca2+ concentration and activated phosphoinositide hydrolysis in transfected mammalian cells. The agonist also elicited a current flow, blocked by spiperone, in Xenopus oocytes injected with in vitro synthesized RNA containing the cloned nucleotide sequences.  相似文献   

4.
The characteristics of the acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) receptors of Deroceras buccal muscle were examined using specific pharmacological probes and sucrose gap electrophysiological analysis. ACh induced concentration-dependent smooth tonic contractures coupled with considerable depolarisation from the normal resting membrane potential of -30.6 mV. The use of choline ester analogues such as carbachol, propionylcholine and butyrylcholine, specific cholinergic agonists such as nicotine, muscarine, bethanecol and pilocarpine and antagonists such as d-tubocurarine, succinylcholine, hexamethomium, atropine, gallamine, pirenzepine and scopolamine indicated that the ACh receptor showed both nicotinic and muscarinic characteristics; the muscarinic activity resembled that of a mammalian M(2)-like receptor. Alternatively, it can not be ruled out that both mammalian types of receptor may be present in this preparation since both nicotine and muscarine induced noticeable tension. 5-HT application induced characteristic dose-dependent phasic contractions accompanied by small but quite consistent depolarisations. Serotonergic agonist and antagonist experiments using 1-(3-chlorophenyl) piperazine, 1-(m-chlorophenyl) biguanide, methiothepin, methysergide and metoclopramide strongly suggested that the 5-HT receptor showed closest pharmacological affinity with the 5-HT(1) receptor class of mammals but with some 5-HT(2) activity. In view of the phylogenetic gap between molluscs and mammals it is not surprising that the ACh and 5-HT receptors of Deroceras can not be properly classified by conventional mammalian terminology.  相似文献   

5.
Serotonin (5-HT) suppresses the photo-responsiveness of medulla bilateral neurons (MBNs) that are involved in the coupling mechanism of the bilaterally paired optic lobe circadian pacemakers in the cricket, Gryllus bimaculatus. We found that forskolin, a highly specific activator of adenylate cyclase, mimicked the effects of serotonin on the MBNs. This fact suggests the involvement of cyclic 3', 5'-adenosine monophosphate (cAMP) in mediating the action of serotonin. We therefore tested the effects of various 5-HT receptor agonists and antagonists that are coupled to adenylate cyclase to specify the receptor involved. Application of 8-OH-DPAT that has affinity for both 5-HT(1A) and 5-HT(7) receptors suppressed the photo-responsiveness, like forskolin. The inhibitory effect of 8-OH-DPAT was effectively blocked by clozapine, a high affinity 5-HT(7) receptor antagonists with a very low affinity for 5-HT(2). Ketanserin, a selective 5-HT(2) antagonist, and NAN-190, a 5-HT(1A) antagonist, did not block it. These results suggest that serotonergic suppression of the photo-responsiveness of the MBNs is mediated by 5-HT(7)-like receptor subtypes.  相似文献   

6.
The 5-HT(7) receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT(7) receptor, as well as homologs for the mammalian 5-HT(1A), and 5-HT(2), receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT(7)Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT(7)Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly.  相似文献   

7.
In addition to antidepressant drugs, some neuroleptic (NL) drugs reduce serotonin2 (5-HT2) receptor binding sites after chronic administration. The present study was undertaken to characterize further this property of NL drugs. Scatchard analysis of [3H]spiperone binding in rat cerebral cortex revealed that 21-day treatment with chlorpromazine (CPZ), cis-flupenthixol, and thioridazine reduced 5-HT2 radioligand binding density by 60, 27, and 18%, respectively. The more selective dopamine-D2 antagonists haloperidol and sulpiride were totally ineffective in this regard. No reduction in 5-HT2 ligand binding sites occurred after 1 day of treatment with CPZ but 3-days of treatment was effective and this reduction persisted, although diminished, for at least 72 h after the last injection. cis-Flupenthixol and d-butaclamol were also effective after 3 days of treatment but trans-flupenthixol and l-butaclamol were not, indicating stereo-specificity of the response mechanism. Female rats showed the same response to CPZ as did male rats. Central 5,7-dihydroxytryptamine-induced lesions of 5-HT neurons demonstrated that intact 5-HT neurons were not required for the reduction of 5-HT2 receptor ligand binding by CPZ. Since CPZ has high affinity for many receptors, including alpha 1, histamine1, and muscarinic receptors, the role of these effects in producing 5-HT2 receptor down-regulation was considered by studying the effects of prazosin, atropine, and pyrilamine administration on 5-HT2 radioligand binding. Results indicate that no one of these actions appears to account for the down-regulation of 5-HT2 receptors by CPZ. Several of these effects, in combination, or some unique mechanism, may be involved.  相似文献   

8.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

9.
Effector coupling mechanisms of the cloned 5-HT1A receptor   总被引:12,自引:0,他引:12  
The signal transduction pathways of the cloned human 5-HT1A receptor have been examined in two mammalian cell lines transiently (COS-7) or permanently (HeLa) expressing this receptor gene. In both systems, 5-hydroxytryptamine (5-HT, serotonin) mediated a marked inhibition of beta 2-adrenergic agonist-stimulated (80% inhibition in COS-7 cells) or forskolin-stimulated cAMP formation (up to 90% inhibition in HeLa cells). This serotonin effect (EC50 = 20 nM) could be competitively antagonized by metitepine and spiperone (Ki = 81 and 31 nM, respectively) and could also be blocked by pretreatment of cells with pertussis toxin. In both cell types, 5-HT failed to stimulate adenylyl cyclase through the expressed receptors. In HeLa cells, 5-HT also stimulated phospholipase C (approximately 40-75% stimulation of formation of inositol phosphates). Again, this effect was inhibited by metitepine. However, the EC50 of 5-HT was considerably higher (approximately 3.2 microM) than that found for inhibition of adenylyl cyclase. Both pathways were demonstrated to be similarly affected by pertussis toxin. These findings indicate that like the M2 and M3 muscarinic cholinergic receptors, the 5-HT1A receptor can couple to multiple transduction pathways with varying efficiencies via pertussis toxin-sensitive G-proteins. The lack of stimulation of cAMP formation by this 5-HT1A receptor may suggest the existence of another pharmacologically closely related receptor.  相似文献   

10.
Biogenic amine serotonin (5-HT) modulates various aspects of behaviors such as aggressive behavior and circadian behavior in the cricket. In our previous report, in order to elucidate the molecular basis of the cricket 5-HT system, we identified three genes involved in 5-HT biosynthesis, as well as four 5-HT receptor genes (5-HT1A, 5-HT1B, 5-HT2α, and 5-HT7) expressed in the brain of the field cricket Gryllus bimaculatus DeGeer [7]. In the present study, we identified Gryllus 5-HT2β gene, an additional 5-HT receptor gene expressed in the cricket brain, and examined its tissue-specific distribution and embryonic stage-dependent expression. Gryllus 5-HT2β gene was ubiquitously expressed in the all examined adult tissues, and was expressed during early embryonic development, as well as during later stages. This study suggests functional differences between two 5-HT2 receptors in the cricket.  相似文献   

11.
Serotonin, 5-hydroxytryptamine (5-HT), plays various roles in the fruit fly, Drosophila melanogaster. Previous studies have shown that 5-HT modulates the heart rate in third instar larvae. However, the receptor subtypes that mediate 5-HT action in larval cardiac tissue had yet to be determined. In this study, various 5-HT agonists and antagonists were employed to determine which 5-HT receptor subtypes are responsible for the positive chronotropic effect by 5-HT. The pharmacological results demonstrate that a 5-HT2B agonist significantly increases the heart rate; however, 5-HT1A, 5-HT1B, and 5-HT7 agonists do not have a significant effect on the heart rate. Furthermore, 5-HT2 antagonist, ketanserin, markedly reduces the positive chronotropic effect of 5-HT in a dose–response manner. Furthermore, we employed genetic approaches to confirm the pharmacological results. For this purpose, we used RNA interference line to knock down 5-HT2ADro and also used 5-HT2ADro and 5-HT2BDro insertional mutation lines. The results show that 5-HT2ADro or 5-HT2BDro receptor mutations reduce the response of the heart to 5-HT. Given these results, we conclude that these 5-HT2 receptor subtypes are involved in the action of 5-HT on the heart rate in the larval stage.  相似文献   

12.
A flexible, multistep parallel synthesis of spiperone analogues is described. A library of 4-substituted piperidines, assembled utilizing reductive amination and acylation protocols, was alkylated either homogeneously or heterogeneously, exploiting a product release only concept, to afford an oxa-series of spiperone analogues. Screening of the products at 5-HT2 and D2 receptors revealed 5-HT2A antagonists with improved selectivity compared to spiperone and AMI-193.  相似文献   

13.
Hyperglycemic properties of serotonin receptor antagonists   总被引:6,自引:0,他引:6  
Several serotonin (5-HT) receptor antagonists with varying specificities for the 5-HT receptor types, were studied with regard to their effects on blood glucose levels in mice. The non-selective antagonists, metergoline and methysergide, proved to be hyperglycemic at doses commonly used to antagonize 5-HT receptors. In contrast, ritanserin (a 5-HT2 and 5-HT1c antagonist) and MDL 72222 (a 5-HT3 antagonist) were effective only at doses which surpassed the dose range considered to be selective for their respective receptors. The results suggest that 5-HT systems play a role in maintaining glucose homeostasis and that 5-HT1 receptors may be particularly important in this function. Furthermore, the inherent hyperglycemic properties of non-selective serotonin antagonists described here, are pertinent to studies using these agents to investigate glucose metabolism.  相似文献   

14.
Anti-idiotypic antibodies were generated by immunizing rabbits with affinity-purified antibodies to serotonin (5-hydroxytryptamine; 5-HT). Anti-5-HT activity was removed from the resulting antisera by chromatography through a 5-HT affinity column. The anti-idiotypic antibodies were demonstrated by enzyme-linked immunosorbent assay to bind to affinity-purified whole anti-5-HT antibodies and their Fab fragments. Anti-idiotypic antibodies, purified by affinity chromatography on columns to which antibodies to 5-HT were coupled, competed with 5-HT (covalently bound to protein) for the binding sites on anti-5-HT antibodies and serotonin binding protein. The anti-idiotypic antibodies antagonized the binding of [3H]5-HT to membranes isolated from the cerebral cortex, striatum, and raphe area more than to membranes from hippocampus or cerebellum. The anti-idiotypic antibodies also blocked the binding of the 5-HT1B-selective ligand (-)-[125I]iodocyanopindolol (in the presence of 30 microM isoproterenol) to cortical membranes. In contrast, anti-idiotypic antibodies failed to inhibit binding of the 5-HT1A-selective ligand 8-hydroxy-2-(di-n-[3H]propylamino)-tetralin [( 3H]8-OH-DPAT) to raphe area membranes or hippocampal membranes. These observations suggested that the anti-idiotypic antibodies may recognize some 5-HT receptor subtypes but not others. This hypothesis was tested by ascertaining the ability of anti-idiotypic antibodies to immunostain cells transfected in vitro with cDNA encoding the 5-HT1C or 5-HT2 receptor or with a genomic clone encoding the 5-HT1A receptor. Punctate sites of immunofluorescence were found on the surfaces of fibroblasts that expressed 5-HT1C and 5-HT2 receptors, but not on the surfaces of HeLa cells that expressed 5-HT1A receptors. Immunostaining of cells by the anti-idiotypic antibodies was inhibited by appropriate pharmacological agents: immunostaining of cells expressing 5-HT1C receptors was blocked by mesulergine (but not ketanserin, 8-OH-DPAT, or spiperone), whereas that of cells expressing 5-HT2 receptors was blocked by ketanserin or spiperone (but not mesulergine or 8-OH-DPAT). The anti-idiotypic antibodies failed to inhibit the uptake of [3H]5-HT by serotonergic neurons. It is concluded that the anti-idiotypic antibodies generated with anti-5-HT serum recognize the 5-HT1B, 5-HT1C, and 5-HT2 receptor subtypes; however, neither 5-HT1A receptors nor 5-HT uptake sites appear to react with these antibodies.  相似文献   

15.
New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.  相似文献   

16.
In the rat brain, the presynaptic 5-hydroxytryptamine (5-HT) autoreceptors located on 5-HT terminals correspond to the 5-HT1B subtype. The presence of a 5-HT receptor probably located on 5-HT nerve endings and modulating transmitter release in the human neocortex has been reported, but its detailed pharmacological characterization is not yet available. On the other hand, receptor binding and autoradiographic results indicate that the 5-HT1B receptor subtype is not present in the human brain. We, therefore, studied the modulation of the electrically evoked release of [3H]5-HT by various 5-HT receptor agonists and antagonists in preloaded slices of human neocortex obtained from 18 patients undergoing neurosurgery. The nonselective 5-HT1A/1B/1D receptor agonist 5-carboxamidotryptamine produced a potent inhibition (70% at 0.03 microM) of the electrically evoked release of [3H]5-HT which was blocked by 5-HT receptor antagonists with the following relative order of potency: methiothepin greater than metergoline = methysergide greater than propranolol. The selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin at 0.1 microM did not modify the electrically evoked release of [3H]5-HT. The 5-HT1A/1B receptor agonist RU 24969 was 10 times more potent at inhibiting [3H]5-HT overflow in the rat frontal cortex than in the human neocortex. The potent 5-HT1B receptor antagonist cyanopinodolol did not modify the 5-carboxamidotryptamine-induced inhibition of the electrically evoked release of [3H]5-HT in slices of the human neocortex, but produced by itself a small inhibition of [3H]5-HT overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1-[2-(4-Azidophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (p-azido-PAPP) inhibits [3H]5-hydroxytryptamine [( 3H]5-HT) binding to 5-HT1A and 5-HT1B sites in rat brain with equilibrium dissociation constants (KD) of 0.9 nM and 230 nM, respectively. [3H]p-Azido-PAPP was synthesized and its reversible and irreversible binding properties to the hippocampal 5-HT1A site characterized. [3H]p-Azido-PAPP labeled a single class of sites in rat hippocampal membranes with a KD of 1 nM and a maximal binding density of 370 fmol/mg protein. The pharmacological profile of [3H]p-azido-PAPP binding was consistent with the radioligand's selective interaction with the 5-HT1A receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes preincubated with [3H]p-azido-PAPP and irradiated showed a major band of incorporation of radioactivity at approximately 55,000 daltons. This incorporation could be blocked when membranes were incubated with 1 microM of several agents that have high affinity for 5-HT1A sites [5-HT, 8-hydroxy-2-(di-n-propylamino)tetraline, TVX Q 7821, spiperone, buspirone, d-lysergic acid diethylamide, metergoline]. The results indicate that on photolysis [3H]p-azido-PAPP irreversibly labels a polypeptide that is, or is a subunit of, the 5-HT1A receptor in rat hippocampus.  相似文献   

18.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,66(23):2233-2238
We have reported previously that escin Ib accelerated gastrointestinal transit (GIT) in mice, and that its effect may be mediated by the release of endogenous prostaglandins (PGs) and nitric oxide (NO). In this study, the possible involvement of 5-HT and 5-HT receptors in the GIT acceleration of escin Ib was investigated in mice. The acceleration of GIT by escin Ib (25 or 50 mg/kg, p.o.) was attenuated by pretreatment with ritanserin (0.5-5 mg/kg, s.c., a 5-HT(2A/2C/2B) receptor antagonist), but not with MDL 72222 (1 and 5 mg/kg, s.c.) and metoclopramide (10 mg/kg, s.c.) (5-HT3 receptor antagonists) or tropisetron (1 and 10 mg/kg, s.c., a 5-HT(3/4) receptor antagonist). Furthermore, pretreatment with ketanserin (0.05-5 mg/kg, s.c.), haloperidol (1-5 mg/kg, s.c.) and spiperone (0.5-5 mg/kg, s.c.) (5-HT2A receptor antagonists), as well as a bolus of dl-p-chlorophenylalanine methyl ester (PCPA, 1000 mg/kg, p.o., 1, 6 or 24 h before administration of the sample) (an inhibitor of 5-HT synthesizing enzyme tryptophan hydroxylase) and reserpine (5 mg/kg, p.o.) (a 5-HT depletor), but not 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor) or repeated PCPA (300 mg/kg x2, p.o., 72 and 48 h before administration of the sample), also attenuated the effects of escin Ib. It is postulated that escin Ib accelerates GIT, at least in part, by stimulating the synthesis of 5-HT to act through 5-HT2, possibly 5-HT2A receptors, which in turn causes the release of NO and PGs.  相似文献   

19.
Implication of acidic lipids in 5-hydroxytryptamine receptor mechanisms   总被引:1,自引:0,他引:1  
To establish the possible involvement of acidic lipids in 5-HT receptor mechanisms, we subjected whole rat brain synaptic plasma membranes to treatment with several kinds of lipid-modifying reagents and examined the [3H]5-HT and [3H]spiperone binding properties of the membranes. [3H]5-HT binding was decreased by treatment with Azure A, while [3H]spiperone binding was not altered. Similarly, prior treatment with arylsulphatase reduced the former binding, but had no effect on the latter binding. On the other hand, neither [3H]ligand binding was sensitive to phospholipases C and D. In contrast, prior treatment with phospholipase A2 (unheated) drastically decreased the [3H]5-HT binding and also affected the [3H]spiperone binding to some extent. Chelation of Ca2+ by EGTA (5 mM) prior to incubation of membranes with the unheated phospholipase A2 did not completely prevent the inhibitory effect of this enzyme on [3H]5-HT binding, while in the heated enzyme (at 100 degrees C for 10 min) EGTA exhibited this preventive effect perfectly. Furthermore, it was an interesting find that at least a low concentration of the heated phospholipase A2 (0.01 U) had no effect on the [3H]spiperone binding, as contrasted with the case of [3H]5-HT binding. In addition, the reduction of [3H]5-HT binding capacity in membranes treated with phospholipase A2 (heated and unheated) was restored only slightly by treatment with BSA (1%). Scatchard analysis of the [3H]5-HT binding showed that Azure A and phospholipase A2 (heated) decreased the Bmax values with no significant alteration in the KD values, whereas arylsulphatase increased only the KD value. All these observations infer that certain acidic lipids may play a role as the recognition site(s) or modulator(s) of 5-HT1 receptor molecules.  相似文献   

20.
Memory impairment is a major problem afflicting mankind. The association between memory functions and neurotransmitter functions is of great interest for understanding brain function. Serotonergic pathways play an important role in the modulation of memory functions but the importance of its receptor types and subtypes on memory functions is still unclear. Activation and blockade of various serotonin (5-HT) receptors has been reported to alter cognitive processes and 5-HT receptor antagonism could be beneficial in the treatment of cognitive diseases. The role of 5-HT on memory functions is complicated. Among the 5-HT receptors subtypes, 5-HT(1A) receptors are of special interest because these receptors are present in the brain areas involved in learning and memory functions such as hippocampus and cortex. The present study was therefore designed to investigate the effect of activation and blockade of somatodendritic and/or postsynaptic 5-HT(1A) receptor on learning and memory functions in rats using modified version of water maze. In this study, 8-OH-DPAT (8-hydroxy-2-(di-N-propylamino) tetralin) at 0.3?mg/kg significantly enhanced learning acquisition (LA), short-term memory (STM) and long term memory (LTM) of rats pre-injected with saline suggesting that the activation of pre-synaptic 5-HT(1A) receptors by its agonist enhanced the memory functions of rats. Conversely, rats injected with 8-OH-DPAT at 1.0?mg/kg exhibited impaired LA and STM and had no effect on LTM. It was also shown in this study that blockade of 5-HT(1A) receptors by spiperone enhanced LA, had no effect on STM but impaired the LTM, which showed that the blockade of 5-HT(1A) receptors by its antagonist exerts different effect on different types of memory. This study suggests that 5-HT(1A) receptor could be used as a significant pharmacological target for the treatment of CNS diseases. Unraveling the role of serotonin in cognition and memory disorders could provide better therapy and it may lead to new insights in our understandings of learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号