首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adding olive oil to an insect cell (Spodoptera frugiperda) cultivation with a TNM-FH medium enhanced cell growth. In the static cultivation, growth with 0.5% oil increased viable cell density by 32%, while cultivation in spinner flasks agitated at 260 rpm increased by 64%. With a gradual increase of agitation from 60 rpm to 500 rpm, the viable cell density was 81% higher than that without the olive oil supplement.  相似文献   

2.
A soil microorganism, identified as Acinetobacter calcoaceticus KB-2, was cultivated on palm oil as a carbon source for cell production. This organism grew with a specific growth rate of l.lOh?1. The pH optimum for growth was between 6.5 and 7.0, and the temperature optimum was 39°C. Compared with other strains on water-insoluble substrates such as hydrocarbons and natural oils and fats so far reported, the cultivation time for this strain was short and the cell mass productivity was relatively high. More than 90% of the palm oil was assimilated by this strain, and the overall cell yield was 1.02 (g of cells/g of palm oil) after 8 hr cultivation with the concentration of 3% palm oil.  相似文献   

3.
A highly stable lipase from Pseudomonas aeruginosa KKA-5 was produced by batch cultivation technique employing shake flask and 5 L-bioreactor. The bioreactor was run at different airflow rates. Low airflow rates (1 and 3 L/min), did not lead to effective growth and lipase production. Growth increased by about one order and lipase production increased by about 6 times, at an airflow rate of 5 L/min. Lipase production occurred during decelerated cell growth. A highly stable lipase was produced which retained its activity in the running bioreactor, even after a period of one month. This stable lipase was partially-purified using ammonium sulphate precipitation technique. Castor oil was hydrolyzed using 300U crude and partially-purified lipase, each. Approximately 21-fold, partially-purified lipase could hydrolyze 81% castor oil within a period of 96 hr, where as only 63% hydrolysis was obtained, in 216 hour, when crude lipase was used.  相似文献   

4.
Slow growth and relatively low cell densities of methanotrophs have limited their uses in industrial applications. In this study, a novel method for rapid cultivation of Methylosinus trichosporium OB3b was studied by adding a water-immiscible organic solvent in the medium. Paraffin oil was the most effective at enhancing cell growth and final cell density. This is at least partially due to the increase of methane gas transfer between gas and medium phases since methane solubility is higher in paraffin than in water/nitrate minimal salt medium. During cultivation with paraffin oil at 5% (v/v) in the medium, M. trichosporium OB3b cells also showed higher concentrations of the intermediary metabolites, such as formic acid and pyruvic acid, and consumed more methane compared with the control. Paraffin as methane vector to improve methanotroph growth was further studied in a 5-L fermentor at three concentrations (i.e., 2.5%, 5%, and 10%). Cell density reached about 14 g dry weight per liter with 5% paraffin, around seven times higher than that of the control (without paraffin). Cells cultivated with paraffin tended to accumulate around the interface between oil droplets and the water phase and could exist in oil phase in the case of 10% (v/v) paraffin. These results indicated that paraffin could enhance methanotroph growth, which is potentially useful in cultivation of methanotrophs in large scale in industry. Bing Han and Tao Su contributed equally to this work.  相似文献   

5.
A low-foaming hydrophobin II deletant of the Trichoderma reesei strain Rut-C30 was used for production of cellulases by continuous cultivation on lactose medium in a laboratory fermenter. The control paradigm of the addition of new medium to the continuous process was based on the growth dynamics of the fungus. A decrease in the rate of base addition to the cultivation for pH-minimum control was used as an indicator of imminent exhaustion of carbon source for growth and enzyme induction. When the amount of base added per 5 min computation cycle decreased below a given value, new medium was added to the fermenter. When base addition for pH control thereafter increased above the criterion value, due to increased growth, the medium feed was discontinued or decreased. The medium feeding protocol employed was successful in locking the fungus in the stage of imminent, but not actual, exhaustion of carbon source. According to the results of a batch cultivation of the same strain on the same medium, this is the phase of maximal enzyme productivity. The medium addition protocol used in this work resulted in a very stable continuous process, in which cellulase productivity was maintained for several hundred hours at the maximum level observed in a batch cultivation for only about 10 h. Despite a major technical disturbance after about 420 h, the process was restored to stability. When the cultivation was terminated after 650 h, the level of enzyme production was still maximal, with no signs of instability of the process.  相似文献   

6.
The ability of microbial degraders of polycyclic aromatic hydrocarbons to grow at 24 degrees C in liquid mineral medium supplemented with oil as the sole source of carbon and energy was studied. Growth characteristics (CFU) and the level of oil destruction by plasmid-bearing and plasmid-free strains were determined after seven days of cultivation. The presence of catabolic plasmids in the degrader strains, including rhizosphere pseudomonads, was shown to increase cell growth and enhance the level of oil degradation. Strain Pseudomonas chlororaphis BS 1391 bearing plasmid pBS216 was found to be the most effective oil degrader.  相似文献   

7.
Micro system technology offers convenient tools for the production of handling devices for small liquid volumes which can be used in cell cultivation. Here, a modular system for the rapid generation of cell suspension aliquots is presented. The system is used to produce and analyze high numbers of well-separated culture volumes. Selected clones may be retrieved from the system. Therefore, the principle of segmented flow is applied. Portions of aqueous culture medium containing one cell or very small cell ensembles are separated from each other by a nonmiscible liquid like dodecane, tetradecane or mineral oil. In addition, the alkane separates the culture droplets from the innerside of the walls of chip channels and capillaries. This way, compatibility problems between cell wall surfaces and the chemical character of walls are excluded. The separated culture droplets are guided by micro flow transportation in different channel and chamber topologies. The whole system has the character of a serially operating cell processing system. The aliquot generation can be sped up to frequencies of about 30 Hz in each microchannel. That means, that about 10(5) individual cultural volumes can be produced per hour or about 2 million per day. The survival and the growth of microorganisms has been shown for model organisms as well as for organisms from a natural sample (soil).  相似文献   

8.
Microparticle-enhanced cultivation (MPEC) was applied as a novel method for improved biomass and product formation during cultivation of filamentous microorganisms. Exemplarily, chloroperoxidase (CPO) formation by Caldariomyces fumago was analyzed in the presence and absence of microparticles of different size. Particles of approximately 500 microm in diameter had no effect on growth morphology or productivity of CPO formation by C. fumago. In contrast particles of < or =42 microm in diameter led to the dispersion of the C. fumago mycelia up to the level of single hyphae. Under these conditions the maximum specific productivity of CPO formation was enhanced about fivefold and an accumulated CPO activity in the culture supernatant of more than 1,000 U mL(-1) was achieved after 10-12 days of cultivation. In addition, the novel cultivation method also showed a positive effect on growth characteristics of other filamentous microorganisms proven by the stimulation of single hyphae/cell formation.  相似文献   

9.
The ability of microbial degraders of polycyclic aromatic hydrocarbons to grow at 24°C in liquid mineral medium supplemented with oil as the sole source of carbon and energy was studied. Growth characteristics (CFU) and the level of oil destruction by plasmid-bearing and plasmid-free strains were determined after seven days of cultivation. The presence of catabolic plasmids in the degrader strains, including rhizosphere pseudomonads, was shown to increase cell growth and enhance the level of oil degradation. Strain Pseudomonas chlororaphis BS1391 bearing plasmid pBS216 was found to be the most effective oil degrader.  相似文献   

10.
A yeast strain, FO-144Cl, was isolated from a soil sample, using crude sardine oil, which contains a large quantity of poly-unsaturated long-chain fatty acids, as a sole carbon source. This strain was identified as a species of Candida. A medium for its growth was optimized by statistical methods and optimal temperature for the growth was from 28 to 30°C. Among the natural oils and fats tested, the yeast grew best on olive oil and grew better on the crude sardine oil than on a refined one. The yield of dry cells was 17.6 mg/ml after 24 h, using 2% crude sardine oil. The maximum growth rate was 0.36, 0.25, and 0.21 h−1 with crude sardine oil, soybean oil, and olive oil, respectively. The content of crude fat in the yeast cells was 15.1% and half of the total cell lipid was triglyceride. Fatty acid compositions of the lipid and oily fractions left in the medium after cultivation were analyzed. Little unsaturated long-chain fatty acids (>C18) was observed in the cell lipids, but they were left concentrated in the medium.  相似文献   

11.
为了研究不同浓度的黄腐酸对单针藻Monoraphidium sp.FXY-10细胞生长、油脂合成的影响,研究于Kuh1培养基中添加4种不同浓度的黄腐酸(40、80、120和160 mg/L),优化出异养培养条件下最适合藻细胞生长的黄腐酸浓度;并采用黄腐酸与异养-自养两步培养联用的方法提高细胞量和油脂含量,自养培养时在培养基中添加5、25、125和625 mg/L的黄腐酸诱导油脂的合成。结果表明,80 mg/L的黄腐酸对细胞生长的促进作用最显著,细胞量可达6.4 g/L,为对照组的1.5倍。黄腐酸的浓度增加至160 mg/L,藻细胞的生长受到明显的抑制。自养培养阶段,添加25 mg/L的黄腐酸能显著地提高藻细胞的油脂含量,其油脂含量从30.78%增加至54.65%。黄腐酸对于单针藻的生长和油脂合成具有明显的促进作用,黄腐酸与两步法联用在提高微藻细胞量和油脂含量方面具有较好的应用前景。  相似文献   

12.
This study proposes a two-stage cultivation process with an autotrophic growth followed by a mixotrophic process. The results indicated that a two-stage cultivation process using a daily dose of 3 g/L of glucose could achieve 7.4 g/L of biomass, which was about a 64 % increase over simple autotrophic cultivation. In the second stage of mixotrophic cultivation, glucose was regarded as a better carbon source for cell growth, than was glycerol. Linoleic acid (C18:2) would be the primary component in the two-stage cultivation as in the autotrophic cultivation. Even carbon source was provided in the second stage of mixotrophic cultivation; lower light intensity limited the mixotrophic growth, which indicated that photosynthesis still plays an important role in the second stage of mixotrophical cultivation. The final biomass was higher after this two-stage cultivation process, which made it suitable for application in the production scale-up of algal biomass.  相似文献   

13.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

14.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

15.
The enzyme controlled substrate delivery cultivation technology EnBase(?) Flo allows a fed-batch-like growth in batch cultures. It has been previously shown that this technology can be applied in small cultivation vessels such as micro- and deep well plates and also shake flasks. In these scales high cell densities and improved protein production for Escherichia coli cultures were demonstrated. This current study aims to evaluate the scalability of the controlled glucose release technique to pilot scale bioreactors. Throughout all scales, that is, deep well plates, 3 L bioreactor and 150 L bioreactor cultivations, the growth was very similar and the model protein, a recombinant alcohol dehydrogenase (ADH) was produced with a high yield in soluble form. Moreover, EnBase Flo also was successfully used as a controlled starter culture in high cell density fed-batch cultivations with external glucose feeding. Here the external feeding pump was started after overnight cultivation with EnBase Flo. Final optical densities in these cultivations reached 120 (corresponding to about 40 g L(-1) dry cell weight) and a high expression level of ADH was obtained. The EnBase cultivation technology ensures a controlled initial cultivation under fed-batch mode without the need for a feeding pump. Because of the linear cell growth under glucose limitation it provides optimal and robust starting conditions for traditional external feed-based processes.  相似文献   

16.
A simple kinetic model is developed to describe the dynamic behavior of myeloma cell growth and cell metabolism. Glucose, glutamine as well as lysine are considered as growth limiting substrates. The cell growth was restricted as soon as the extracellular lysine is exhausted and then intracellular lysine becomes a growth limiting substrate. In addition, a metabolic regulator model together with the Monod model is used to deal with the growth lag phase after inoculation or feeding. By using these models, concentrations of substrates and metabolites, as well as densities of viable and dead cells are quantitatively described. One batch cultivation and two fed-batch cultivations with pulse feeding of nutrients are used to validate the model.  相似文献   

17.
The growth and composition of a population were studied during long-term (up to 50 days) batch cultivation of mono and mixed cultures of Pseudomonas aeruginosa S- and M-dissociants and Rhodobacter sphaeroides R- and M-dissociants without the addition of nutrients. During the cultivation of P. aeruginosa on a glucose-containing mineral medium, periodic lysis followed by polyculture growth resumption in the late stationary phase occurred on account of the M-dissociant: the change in its cell number corresponded to the change in the total cell number of the association. It was shown that the periodic occurrence of reducing sugars in the medium preceded the resumption of polyculture growth. Periodic secondary growth of the mixed culture of R. sphaeroides photosynthesizing bacteria occurred because of fast growing R-cells after the lysis of some part of the R-dissociant population. In the monoculture of the R. sphaeroides M-dissociant, R-cells were found during the whole period of cultivation, making up to 1–10% of the population irrespective of its size, which probably corresponded to the frequency of occurrence of this dissociant. In the R-dissociant monoculture, M-cells were found only after 26 days, and their number gradually decreased to half of population by the end of cultivation period. The joint growth of dissociants was characterized by the biomass increment and bacterial growth acceleration compared to monocultures, which is important for the fast development of new habitats under natural conditions. The cells of both bacterial species were lysed during long-term cultivation by exoproteinases secreted by the thin-wall cells of M-dissociants.  相似文献   

18.
A strategy for optimization of non-growth-associated production in batch culture employing an empirical approach was developed through the study of virginiamycin production. The strategy is formulated with two aims: attaining a high cell concentration at the beginning of the production phase without decrease in production activity; and enhancing the production activity during the production phase. As a practical example, the goal of a maximum virginiamycin (M and S) production in the batch culture of Streptomyces virginiae was set. To attain a high cell concentration in the production phase of the batch culture, that is, to extend the growth phase for as long as possible, the optimum composition and concentration of the complex medium, especially the yeast extract (YE) concentration, were first investigated. Dissolved oxygen (DO) concentration control was also a parameter considered in maintaining the production activity during the production phase. In addition, to enhance the production activity, an optimum addition strategy of an autoregulator, virginiae butanolide-C (VB-C), was investigated. Combining these measures, the optimum cultivation conditions were found to be an initial YE concentration in the complex medium of 45 g/L, the shot addition of 300 mug/L of VB-C 11.5 h after the start of the batch culture, and a DO concentration maintained above 2 mg/L. The maximum concentrations of virginiamycin M and S were about ninefold those obtained under nonoptimum cultivation conditions. Nonoptimum cultivation conditions consisted of an initial YE concentration one sixth (7.5 g/L) that of the optimum cultivation conditions, and no VB-C addition. These conditions were used as representative of the standard cultivation of virginiamycin in this study. The strategy developed here will be applicable to the production of other antibiotics, especially to the cultivation of Streptomyces species, in which a hormonelike signal material (an autoregulator) plays an important role in antibiotic production. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Saccharomycopsis lipolytica developed mycelial cells in media containing both olive oil and bovine milk casein. Olive oil could be replaced by other lipids including triolein, oleic acid, linoleic acid and oleyl alcohol. On the other hand, bovine milk casein could be replaced by a soybean fraction and meat extract, but not by casamino acids or individual common amino acids. The mycelial development was inhibited with a deficiency of magnesium sulfate and ferric chloride or with the addition of cysteine and reduced glutathione.

The mycelial development began after 8 hr from the start of cultivation and the mycelial cell ratio was maximum after 20 hr. Mycelial cells and yeast-form ones were separated from each other on the basis of cellular specific gravity and this method was used to determine the mycelial cell ratio in the present study.  相似文献   

20.
Using a strain of Candida krusei IA-1 isolated from commercial Japanese sake lees, the effects of carbon on the lag phase and logarithmic growth phase were investigated in repeated batch cultivation. The lag phase was about 1 h shorter with the addition of 2%w/v of activated carbon to fresh medium. The free cell concentration was approximately 108 cells/ml in the presence, but only 105 cells/ml without addition. ©: Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号