首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of various recombinant cytokines i.e. IL-1 alpha, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha and GM-CSF used either alone or in combination with IL-2, were investigated in this study. First, their capacity to induce killer cells from human PBL was examined by evaluating the degree of killing of human NK-sensitive K562 or NK-resistant Daudi cells. Second the effects of these cytokines, LAK cells (at 1/1, 2/1, 4/1 ratio LAK effectors/bone marrow cell targets) and of the supernatants from washed killer cell cultures, were examined on the colony forming ability of human bone marrow for GM-CFU in vitro. Various degrees of NK activity against K562 was observed in PBL stimulated with the cytokines, whereas LAK activity was found only with IL-2 alone. Culture of PBL with IL-2 + IL-1 alpha or IL-2 + IL-6 or IL-2 + GM-CSF resulted in the highest LAK killing. However, addition of TNF-alpha, or IFN-gamma to IL-2 in cultures resulted in a significant suppression of LAK cell activity. Addition of IL-1 alpha, IL-2, IL-3, and IL-4 to BM cultures had little or no effect on day 14 GM-CFU, whereas addition of IL-6 and GM-CSF resulted in a stimulatory effect. LAK cells induced with IL-2 alone had no significant suppressive effects on GM-CFU.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary A multicellular tumor spheroid (MTS) model for head and neck cancers has been used to examine the immune function of fresh and 6-day interleukin-2(IL-2)-activated peripheral blood lymphocytes (PBL). MTS are individually cultured in the presence of effector cells, and the spheroids' growth is monitored by sizing them under an inverted microscope. Dose/response studies for IL-2 (0–100 U/ml) alone and for fresh unstimulated PBL (0–105 cells/MTS) showed no effects on MTS growth. IL-2-activated PBL (0–105 cells/MTS), in contrast, modulated MTS growth in a multiphasic pattern: MTS growth was unperturbed for the first 3 days and then growth inhibition occurred, followed by MTS disintegration. Histological analysis showed that intact MTS histoarchitecture correlated with unperturbed growth, and increasing cell sloughing and MTS dissolution and replacement by activated PBL correlated with growth inhibition and disintegration. Flow-cytometric sorting of lymphocyte subset populations indicated that it was the Leu19+CD3 cells that produced these growth-modulatory effects. In contrast to the initial LAK cell resistance of MTS, single-cell suspensions demonstrated significant lysis in standard 4-h chromium-release assays. Differences between single cells and MTS suggest a potential for tissue-like organization as a factor in lymphokine-activated killing.Supported in part by the First Independent Investigator Award (R29 CA46 251-01) (S. P. S.) of the National Cancer Institute. The Cancer Information Systems Core Facility used in this study was funded under the National Cancer Institute grant CA 16672  相似文献   

3.
To study the effect of IL-6 on the development of cytotoxic cells, we examined lymphokine-activated killer (LAK) activity generated from human nonadherent PBL. Addition of rIL-6 at the initiation of 5-day PBL cultures significantly increases LAK activity in the presence of low concentrations (between 5 and 25 u/ml) of rIL-2. RIL-6 alone induces no PBL LAK activity but at doses as low as 0.8 u/ml rIL-6 enhances LAK activity with optimal enhancement of LAK at 5.0 u/ml of rIL-6. This enhancement is independent of effects on cells growth as rIL-6 did not affect the cell recovery of PBL cultured in rIL-2. RIL-6-enhanced LAK is mediated by the same type of effector cells as those of LAK from rIL-2 alone with effector cells primarily generated from large granular CD3-negative E rosetting lymphocytes. RIL-6 does not change the time course of LAK development and pretreatment of PBL with rIL-6 has no effect on the PBL response to subsequent rIL-2 induction of LAK. Addition of rIL-6 to LAK cultures 2 hr before the cytotoxicity assay shows equal enhancement as addition at the initiation of the culture. However, rIL-6 requires the presence of both rIL-2 and another factor in the supernatant from LAK cultures in order to enhance LAK. Our results indicate that IL-6 can modulate LAK activity at a very late stage of LAK development, and that the enhancement by IL-6 is dependent on the presence of IL-2 and another soluble factor generated during rIL-2 culture.  相似文献   

4.
The gene for a cell surface glycoprotein recognized by a mouse monoclonal antibody (Mab 4), has been assigned to human chromosome 11 by the study of mouse-human lymphocyte hybrids. The antigen is present on all human peripheral blood leukocytes, on human fibroblasts, and on human lymphoid and erythroid cell lines, but not on erythrocytes. Immunoprecipitation and polyacrylamide slab gel electrophoresis of both human cells and mouse-human hybrid clones carrying human chromosome 11 show that the apparent molecular weight of this glycoprotein is 75,000.  相似文献   

5.
In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS. The decreased VLS in CD44v6-v7 KO and CD44v7 KO mice did not result from differential activation and expansion of CD8+ T cells, NK, and NK-T cells or from altered degree of perivascular lymphocytic infiltration in the lungs. LAK cells from CD44v7 KO mice showed a significant decrease in their ability to adhere to and mediate lysis of EC but not lysis of P815 tumor cells in vitro. CD44v7-mediated lysis of EC by LAK cells was dependent on the activity of phosphatidylinositol 3-kinase and tyrosine kinases. Interestingly, IL-2-activated LAK cells expressing CD44hi but not CD44lo were responsible for EC lysis. Furthermore, lysis of EC targets could be blocked by addition of soluble or enzymatic cleavage of CD44v6-v7-binding glycosaminoglycans. Finally, anti-CD44v7 mAbs caused a significant reduction in the adherence to and killing of EC and led to suppression of IL-2-induced VLS. Together, this study suggests that the expression of CD44v7 on LAK cells plays a specific role in EC injury and that it may be possible to reduce EC injury but not tumor cell killing by specifically targeting CD44v7.  相似文献   

6.
Somatic cell hybrids between SV40-transformed human cell lines and mouse peritoneal macrophages (MPM) containing either human chromosome 7 or 17 carrying the SV40 genome were injected into mice syngeneic to the mouse parental cells. Since either chromosome 7 or 17 was the only human chromosome present in the hybrids used as immunogens, the humoral immune response to gene products coded for by either chromosome was assayed. Using a sensitive radioimmunoassay, we were able to identify noncross-reactive cell-surface antigen(s) specifically coded for by either human chromosome 7 or 17, and present in normal, tumor-derived and virus-transformed human cells. However, no reactivity against SV40 tumor-specific surface antigen (TSSA) could be detected in the antisera.  相似文献   

7.
NIH 3T3 tertiary transfectants containing the N-ras or c-Ha-ras oncogenes derived from human tumors were tested for susceptibility to lymphokine-activated killer (LAK) cell and natural killer (NK) cell lysis. N-ras tertiary transfectants contained a human acute lymphocytic leukemia-derived N-ras oncogene. C-Ha-ras transfectants contained either the position 61-activated form of the oncogene (45.342, 45.322, and 45.3B2) or the position 12-activated form (144-162). In 4 hr 51Cr release assays, seven of seven in vivo grown human oncogene transfected NIH 3T3 fibroblasts were lysed by murine LAK effectors, whereas six of seven were lysed by human LAK effectors. There was no difference in susceptibility to lysis between cells transfected with the N-ras oncogene, the position 61 activated c-Ha-ras oncogene, or the position 12 activated c-Ha-ras oncogene. Cultured NIH 3T3 fibroblasts, as well as in vitro and in vivo grown NIH 3T3 tertiary transfectants were resistant to lysis by murine NK effectors and were relatively resistant (4/6 were not lysed) to lysis by human NK effectors. We conclude that human oncogene-transfected tumors are susceptible to lysis by both murine and human LAK cells while being relatively resistant to lysis by murine and human NK cells. Different oncogenes or the same oncogene activated by different point mutations do not specifically determine susceptibility to lysis by LAK or NK. Also the presence of an activated oncogene does not appear to be sufficient for inducing susceptibility to these cytotoxic lymphocyte populations.  相似文献   

8.
We previously demonstrated that IL-2 promotes the adhesion of NK cells to endothelial cells (EC) and that EC are readily lysed by lymphokine-activated killer (LAK) cells in vitro, suggesting that cell mediated endothelial injury may contribute to the capillary leak syndrome observed in patients treated with IL-2. In this investigation, we sought to determine the effects of EC activation on the in vitro susceptibility of EC to LAK cell-mediated cytolysis. Despite increased binding of CD16+ lymphocytes to TNF-activated EC monolayers, prior exposure of EC to any of several IL-2-inducible cytokines including TNF-alpha, IL-1 beta, and IFN-gamma not only failed to render the EC more vulnerable to cytolysis but increased their resistance to LAK cells in 111Indium release cytolysis assays. This decrement in susceptibility to cytolysis resulting from prior exposure to cytokines preceded any detectable increase in HLA class I or II Ag expression. In cold target competition experiments with LAK cell effectors and radiolabeled K562 target cells, TNF-primed EC were no more competitive than unstimulated EC, and in assays with unstimulated PBMC effectors, the addition of unlabeled TNF-activated EC actually increased the cytolysis of the radiolabeled tumor cells. The effects of various cytokines and lymphocyte preparations on EC permeability were also evaluated. In these experiments, saphenous vein EC were cultured on porous filter disks, exposed to cytokines or lymphocytes, and the diffusion of 125I-BSA through the filters was then measured. Exposure to IL-2, IFN-gamma, or TNF-alpha did not increase the diffusion of the BSA through the EC-coated filters, whereas LAK cells markedly increased their permeability. Consistent with the results of the cytolysis assays, pretreatment of the EC with TNF, IL-1, or IFN-gamma diminished the LAK cell-induced increase in BSA diffusion. These results suggest that although circulating IL-2-inducible cytokines such as TNF and IFN-gamma may activate EC in vivo and contribute to lymphocyte margination and lymphopenia, they may not be directly responsible for the IL-2-induced capillary leak syndrome and may actually protect EC from LAK cell-mediated injury.  相似文献   

9.
Lymphokine-activated killer cells (LAK) are cytolytic lymphocytes with the unique capacity of killing NK-resistant fresh human tumor cells in short-term assays. LAK appear to kill autologous tumors as well as TNP-modified self and allogeneic tumors with complete crossreactivity, both at the population and clonal level. Initial studies on the classification of LAK conclude that LAK are distinct from the classical NK and T-lymphocyte systems based on a number of criteria including surface phenotype, activation conditions, and spectrum of susceptible target cells. LAK kill rasoncogene-transfected fibroblasts in a manner similar to fresh tumors. As yet, the target cell determinant responsible for susceptibility to LAK lysis is unknown, but cell-surface proteins are definitely involved. Activation of LAK requires only IL-2, and is most efficient using serum-free conditions. Because interleukin-2 alone is sufficient for LAK activation, we have tested in vitro whether fresh PBL could be activated in the presence of tumor, as might be desired in vivo. LAK activation was greatly suppressed by tumor presence. LAK activation is also suppressed by hydrocortisone, but not cyclosporine A. Because of the above and other findings, we have initiated a clinical protocol to test whether LAK made from brain-tumor patients' PBL could eliminate residual glioma tumor cells. Autochthonous LAK, plus rIL-2 to maintain lytic ability, are injected during surgery. Preclinical studies in a rat glioma model have shown this approach to be safe. Eleven glioma patients have been injected intracerebrally with IL-2 and/or LAK with no immediate or long-term (14 months follow-up) adverse effects. Much work is needed to understand the LAK phenomenon and to resolve its potential usefulness in cancer therapy as well as its inherent biologic role.  相似文献   

10.
Summary The effect(s) of purified transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) on the induction and function of lymphokine-activated killer (LAK) cells and cytotoxic T lymphocytes (CTL) was examined. The addition of TGF-beta, but not PDGF, to cultures containing fresh C57BL/6 mouse splenocytes or human peripheral blood lymphocytes plus recombinant interleukin-2 markedly inhibited the development of mouse and human LAK cell activity (measured after 3 days for cytotoxicity against cultured or fresh tumor targets in 4-h 51Cr release assays). The addition of TGF-beta, but not PDGF, to a one-way, C57BL/6 anti-DBA/2, mixed lymphocyte reaction effectively blocked the generation of allospecific CTL as well. However, TGF-beta did not inhibit the effector function of LAK cells or of allospecific CTL when added directly to the short-term cytolytic assay. A second form of homodimeric TGF-beta, type 2, was also found to be suppressive on the development of murine LAK cells and allospecific CTL. Collectively, these data demonstrate that the peptide TGF-beta is a potent inhibitor of LAK cell and CTL generation in vitro.  相似文献   

11.
The present studies demonstrate that the intracellular fluorochromes calcein and hydroethidine can be used for quantification of effector-target conjugates involving cloned human natural killer (NK) or interleukin-2 (IL-2) activated human lymphokine activated killer (LAK) cells by dual color flow cytometry without potential artifacts that might result from extensive modification of effector and/or target cell membranes. Cloned NK cells and LAK cells form conjugates with cultured cell lines regardless of susceptibility to lysis. The strength of the interactions in these conjugates was investigated using a variable speed vortexer. Even relatively gentle vortexing disrupted most conjugates involving fresh human peripheral blood lymphocytes (PBL) but only about one-fourth of conjugates between K-562 cells and human PBL that had been cultured with or without IL-2 by this treatment. The rate of conjugate formation for LAK cells was determined to be about 3 times faster than for cloned NK cells, and both rates are considerably faster than the reported rate of formation of cytotoxic T lymphocyte (CTL) target conjugates. The differences in the rate of conjugate formation are apparently not related to target cell specificity, since LAK cells form conjugates with susceptible and resistant cell lines at comparable rates. When effector-target conjugates are incubated at 37 degrees C in the absence of calcium--thereby precluding lysis--the percentage of conjugated LAK or cloned NK cells decreases logarithmically with time. These results suggest that an initial equilibrium between free and conjugated lymphocytes gradually shifts in favor of unconjugated cells.  相似文献   

12.
Interleukin 1 is a pleuripotent cytokine shown to synergize with IL-2 in the generation of lymphokine-activated killer (LAK) cells, when cultured with human peripheral blood mononuclear cells (PBMC) or peripheral blood lymphocytes (PBL). When IL-1 and low dose IL-2 are added in combination, both LAK cytotoxicity and proliferation are increased in short-term (5-6 day) and long-term (12-14 day) cultures compared with cells activated with IL-2 alone. The purpose of this study was to examine the contribution of tumor necrosis factor (TNF-alpha), lymphotoxin (LT, or TNF-beta) and the TNF receptor in the observed IL-1/IL-2 mediated synergy. Analysis of lymphocyte culture supernatants using the L929 bioassay and by specific ELISAs demonstrated an increased production of both TNF and LT in those cells cultured with IL-1 and IL-2. Utilizing specific neutralizing antisera, our experiments demonstrated the biologic activity of both cytokines, with LT-specific antibodies producing the greatest diminution of IL-1/IL-2 stimulated cell proliferation and cytotoxicity. The addition of IL-1 and IL-2 in combination markedly upregulated TNF-receptor expression (measured by Scatchard analysis) in comparison with cells stimulated with IL-2 alone. Characterization of the TNF-R by flow cytometric analysis revealed increased membrane expression of the 75 kDa, but not the 55 kDa, TNF binding protein as a result of IL-1 costimulation.  相似文献   

13.
Human thymocytes are devoid of NK cells but develop lymphokine-activated killer (LAK) activity after culture with recombinant interleukin-2 (rIL-2). The most active precursor for this activity appears to be a CD3-negative cell. The purpose of these studies was to compare the phenotype and functional activities of thymocyte and peripheral blood lymphocyte (PBL) LAK cells. Following culture, rIL-2-activated thymocytes resemble PBL-generated LAk and PBL NK cells. For each of these populations, lytic activity is highest in NKH-1-positive cells. Two-color fluorescence of each population also indicates that NKH-1+ cells are highly granular, as measured by staining with the lysosomotropic vital dye quinacrine. PBL, PBL-derived LAK cells, and thymus-derived LAK cells have a portion of cells that express both CD3 and NKH-1. However, approximately 60-80% of NKH-1+ cells lack detectable CD3. This suggests that both CD3+ and CD3- cells may be capable of LAK activity. Thymic-derived LAK cells respond to interferon in a manner very similar to NK and PBL-derived LAK cells, but lack the NK-associated CD16 antigen. Thus, despite the absence of NK cells in the thymus, it is possible to generate thymocyte LAK activity which bears a strong resemblance to LAK activity derived from peripheral blood lymphocytes.  相似文献   

14.
The human T cell antigen Leu-2 (T8) is encoded on chromosome 2   总被引:4,自引:0,他引:4  
Summary The locus encoding the human T lymphocyte cell surface antigen Leu-2 has been assigned to chromosome 2 with a DNA mapping panel derived from somatic cell hybrids. The two genomic components identified by a cDNA clone for Leu-2 segregated with human chromosome 2 in all 24 independent hybrid clones examined. The cosegregation of the Leu-2 and immunoglobulin kappa (IgK) loci in hybrids with spontaneous rearrangements of chromosome 2 is consistent with the possibility that the Leu-2 locus is on proximal human 2p near IgK. In the mouse, a locus for a T lymphocyte cell surface antigen with properties similar to Leu-2 is closely linked to the IgK locus on mouse chromosome 6. Hence the syntenic relationship of a gene implicated in T cell killing with the immunoglobulin kappa locus would then be conserved in the mouse and human genomes.  相似文献   

15.
IL-2-activated lymphocytes (LAK cells) show increased adherence to, and killing of, human vascular endothelial cells compared to resting lymphocytes. In the present work, we have found that supernatants from LAK cell cultures also are toxic to human umbilical vein endothelial cells (HUVEC) when tested for 48 h in a neutral red uptake assay. Recombinant TNF-alpha and IFN-gamma at high concentrations are also toxic under the same test conditions, and TNF-alpha was directly detected in LAK cell supernatants. An inconsistent inhibition of toxicity was found with anti-TNF-alpha whereas anti IFN-gamma antibodies had a partial inhibitory effect. The susceptibility of HUVEC to cellular killing by LAK cells could be up- and down-regulated with insulin-like growth factor I and IFN-gamma, respectively. It is concluded that damage to vascular endothelium during high dose IL-2 treatments may be partially related to an excessive production of lymphokines such as IFN-gamma and TNF-alpha. IFN-gamma may, in addition, be protective for HUVEC during cellular interactions with LAK cells.  相似文献   

16.
Lymphokine activated killer cells (LAK cells) or interleukin 2 (IL-2)-activated killer cells were induced by recombinant IL-2 (TGP-3) for clinical adoptive immunotherapy of malignant diseases. After incubation of peripheral blood lymphocytes (PBL) with IL-2 and normal human plasma for 1-2 weeks LAK cells were obtained that showed a maximum cytotoxicity against target cells, and did not need a toxic dose of IL-2 to enhance or maintain their cytotoxicity. Both autologous and allogeneic LAK cells were used in five clinical cases without any immune side effects, and were effective in three cases.  相似文献   

17.
The CD59 (MEM-43) antigen, which probably is a human homologue of mouse Ly-6 antigens, is a broadly expressedM r 18000–25000 human leucocyte surface glycoprotein recognized by monoclonal antibody MEM-43. Ten mouse-human T-lymphocyte hybrids, carrying all mouse chromosomes and a limited number of human chromosomes, were analyzed for expression of CD59 by indirect immunofluorescence and immunoblotting with MEM-43 antibody. Karyotypic analysis of the tested clones showed that the presence of human chromosome 11 correlated with the expression of CD59 in all clones tested. Three other human chromosome 11-encoded antigens, 4F2 (Trop-4), Leu 7 (HNK-1, CD57), and lymphocyte homing receptor, were expressed concordantly with CD59. A more exact localization of the gene for CD59 was obtained by the study of Chinese hamster-human cell hybrids containing short or long arm deletions of human chromosome 11. CD59 segregated with hybrids containing part of the short arm of human chromosome 11, but not with the hybrids containing the long arm. Based on these studies we assign the gene for CD59 to regionP14–p13 of the short arm of chromosome 11.  相似文献   

18.
Peripheral blood polymorphonuclear neutrophils (PMN) can significantly inhibit lymphokine-activated killer- (LAK) mediated cytotoxicity when added to a cytotoxicity assay of IL-2-activated PBL and target cells. The inhibition by resting PMN is resistant to blocking with catalase and superoxide dismutase, suggesting that reactive oxygen species are not involved. The addition of TNF greatly enhanced the PMN-mediated inhibition of LAK effector functions. This TNF-enhanced inhibition is reversed by catalase, but not by superoxide dismutase, implicating hydrogen peroxide in the augmented inhibition. Separation of PMN from effector cells and target cells totally abrogates the inhibition by both resting PMN and TNF-treated PMN. Formalin-fixed PMN, heat-treated PMN, PMN lysates, and PMN membrane all fail to mediate any inhibition of LAK. These results suggest that contact with intact viable PMN is needed for inducing LAK inhibition. However, pretreatment of LAK cells with PMN also decreases their cytotoxicity in subsequent chromium release assays. PMN can also inhibit NK cytotoxicity of fresh PBL. However, NK activity is much less sensitive to inhibition by resting PMN than is LAK. TNF also augments PMN inhibition of NK, and there is no significant difference between LAK and NK in sensitivity to the TNF-enhanced inhibition. Our results indicate that PMN can significantly influence the destruction of tumor targets by LAK and NK, and suggest that approaches to circumvent such regulation may be important in the outcome of immunotherapies with IL-2 and LAK cells.  相似文献   

19.
Human peripheral blood lymphocytes cultured for 4 days in the interleukin 2 (IL-2)-containing cell-free supernatant of the MLA144 cell line (MLA144CM) are cytolytic to NK-susceptible and NK-resistant tumor target cells. This lymphokine-activated killer (LAK) activity is dependent on IL-2 as development of LAK activity is inhibited in the presence of a monoclonal antibody (MoAb) reacting with the IL-2 receptor (anti-Tac). Addition of cyclosporin A (CyA) to mixed lymphocyte cultures inhibits the development of allospecific cytotoxic activity and inhibits the development of IL-2 responsiveness. However, development of LAK activity is unaffected by the inclusion of CyA in the cultures, showing that the LAK precursor can be functionally distinguished from the allospecific cytotoxic precursor cell. Development of LAK activity does not require mature NK cells as shown by the generation of LAK activity from NK inactive human thymocytes and lymph node cells. In addition, depletion of NK activity from human PBL does not impair the development of LAK activity.  相似文献   

20.
Culture of tumor-infiltrating lymphocytes (TIL) containing about 20% BMC2 tumor cells with recombinant human interleukin 2 (rIL-2) resulted in the diminish of tumor cells and the growth of lymphocytes. These IL-2-activated lymphocytes showed a strong cytotoxic activity against not only syngeneic tumor cells but also allogeneic tumor cells. Such broad-reactive killer cells, termed lymphokine-activated killer (LAK) cells, are also inducible from spleen cells by in vitro activation with IL-2. However, LAK cells generated from TIL (TIL-LAK) showed higher cytotoxic activity against BMC2 than LAK cells generated from spleen cells (S-LAK). Furthermore, it was demonstrated that TIL-LAK cells revealed marginal cytotoxic activity against normal Con A blasts and YAC-1 cells as opposed to S-LAK. Flow cytometric analysis of TIL-LAK indicated that TIL-LAK cells mainly consisted of Thy 1.2+, Ly 2+, asialo GM1+ cells. TIL-LAK cells displayed not only in vitro cytotoxicity but also in vivo anti-tumor activity. Furthermore, it was also confirmed that TIL-LAK cells could be induced in autochthonous mouse tumor systems and human gastric tumor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号