首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In phosphatidylcholine (PC)-containing prokaryotes, only the methylation pathway of PC biosynthesis was thought to occur. However, a second choline-dependent pathway for PC formation, the PC synthase (Pcs) pathway, exists in Sinorhizobium (Rhizobium) meliloti in which choline is condensed with CDP-diacylglyceride. Here, we characterize the methylation pathway of PC biosynthesis in S. meliloti. A mutant deficient in phospholipid N-methyltransferase (Pmt) was complemented with a S. meliloti gene bank and the complementing DNA was sequenced. A gene coding for a S-adenosylmethionine-dependent N-methyltransferase was identified as the sinorhizobial Pmt, which showed little similarity to the corresponding enzyme from Rhodobacter sphaeroides. Upon expression of the sinorhizobial Pmt, besides phosphatidylcholine, the methylated intermediates of the methylation pathway, monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine, are also formed. When Pmt-deficient mutants of S. meliloti are grown on minimal medium, they cannot form PC, and they grow significantly more slowly than the wild type. Growth of the Pmt-deficient mutant in the presence of choline allows for PC formation via the Pcs pathway and restores wild-type-like growth. Double knock-out mutants, deficient in Pmt and in Pcs, are unable to form PC and show reduced growth even in the presence of choline. These results suggest that PC is required for normal growth of S. meliloti.  相似文献   

2.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the CDP-choline pathway or the methylation pathway. In prokaryotes only the methylation pathway was thought to occur. Recently, however, we could demonstrate (de Rudder, K. E. E., Sohlenkamp, C., and Geiger, O. (1999) J. Biol. Chem. 274, 20011-20016) that a second pathway for phosphatidylcholine biosynthesis exists in Sinorhizobium (Rhizobium) meliloti involving a novel enzymatic activity, phosphatidylcholine synthase, that condenses choline and CDP-diacylglyceride in one step to form PC and CMP. Using a colony autoradiography method we have isolated mutants of S. meliloti deficient in phosphatidylcholine synthase and which are no longer able to incorporate radiolabeled choline into PC. Complementation of such mutants with a sinorhizobial cosmid gene bank, subcloning of the complementing fragment, and sequencing of the subclone led to the identification of a gene coding for a presumptive CDP-alcohol phosphatidyltransferase. Amplification of this gene and its expression in Escherichia coli demonstrates that it codes for phosphatidylcholine synthase. Genomes of some pathogens (Pseudomonas aeruginosa and Borrelia burgdorferi) contain genes similar to the sinorhizobial gene (pcs) for phosphatidylcholine synthase. Although pcs-deficient S. meliloti knock-out mutants show wild type-like growth and lipid composition, they are unable to perform rapid PC biosynthesis that normally is achieved via the phosphatidylcholine synthase pathway in S. meliloti wild type.  相似文献   

3.
Membrane lipids in most bacteria generally consist of the glycerophospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine (PE). A subset of bacteria also possesses the methylated derivatives of PE, monomethylphosphatidylethanolamine, dimethylphosphatidylethanolamine, and phosphatidylcholine (PC). In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway. In the latter pathway, one of the building blocks for PC formation, choline, is obtained from the eukaryotic host. Under phosphorus-limiting conditions of growth, S. meliloti replaces its membrane phospholipids by membrane-forming lipids that do not contain phosphorus; namely, the sulfolipid sulfoquinovosyl diacylglycerol, ornithine-derived lipids, and diacylglyceryl-N,N,N-trimethylhomoserine. Although none of these phosphorus-free lipids is essential for growth in culture media rich in phosphorus or for the symbiotic interaction with the legume host, they are expected to have major roles under free-living conditions in environments poor in accessible phosphorus. In contrast, sinorhizobial mutants deficient in PC show severe growth defects and are completely unable to form nodules on their host plants. Even bradyrhizobial mutants with reduced PC biosynthesis can form only root nodules displaying reduced rates of nitrogen fixation. Therefore, in the cases of these microsymbionts, the ability to form sufficient bacterial PC is crucial for a successful interplay with their host plants.  相似文献   

4.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesised by either of two pathways, the CDP-choline pathway or the methylation pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of distantly related bacteria such as Rhizobacteria and Spirochetes. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a novel choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, a novel enzymatic activity, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. Surprisingly, genomes of some pathogens (Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) contain genes similar to the sinorhizobial gene for phosphatidylcholine synthase. We, therefore, suggest that the new PC synthase pathway is present in a number of bacteria displaying symbiotic or pathogenic associations with eukaryotes and that the eukaryotic host functions as the provider of choline for this pathway.  相似文献   

5.
Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.  相似文献   

6.
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.  相似文献   

7.
The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.  相似文献   

8.
Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME.  相似文献   

9.
Phosphatidylethanolamine (PE) and cardiolipin (CL) are major components of bacterial and eukaryotic membranes. In bacteria, synthesis of PE usually occurs via decarboxylation of phosphatidylserine (PS) by PS decarboxylases (Psd). CL is produced by various CL synthases (Cls). Membranes of the plant pathogen Xanthomonas campestris predominantly contain PE, phosphatidylglycerol (PG) and CL. The X. campestris genome encodes one Psd and six putative CLs. Deletion of psd resulted in loss of PE and accumulation of PS. The mutant was severely affected in growth and cell size. PE synthesis, growth and cell division were partially restored when cells were supplied with ethanolamine (EA) suggesting a previously unknown PE synthase activity. Via mutagenesis, we identified a Cls enzyme (Xc_0186) responsible for EA‐dependent PE biosynthesis. Xanthomonas lacking xc_0186 not only lost its ability to utilize EA for PE synthesis but also produced less CL suggesting a bifunctional enzyme. Recombinant Xc_0186 in E. coli and in cell‐free extracts uses cytidine diphosphate diacylglycerol (CDP‐DAG) and PG for CL synthesis. It is also able to use CDP‐DAG and EA for PE synthesis. Owing to its dual function in CL and PE production, we consider Xc_0186 the founding member of a new class of enzymes called CL/PE synthase (CL/PEs).  相似文献   

10.
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.  相似文献   

11.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

12.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.  相似文献   

13.
The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis.  相似文献   

14.
15.
The pathways of glycerophospholipid syntheses in adult Brugia pahangi and Brugia patei were examined by radioisotopic incorporation and demonstration of the enzymatic steps. Radiolabelling studies showed that l-U-14C-glycerol-3-phosphate was rapidly incorporated into glycerophospholipids of B. pahangi and B. patei, respectively, with the label distributed in phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG) and cardiolipin (CL) fractions. Crude extracts of these worms were found to contain significant activities of sn-glycerol-3-phosphate acyl-transferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), choline phosphotransferase (EC 2.7.8.2), ethanolamine phosphotransferase (EC 2.7.8.1), PE methyltransferase (EC 2.1.1.17), PS decarboxylase (EC 4.1.1.65), phosphatidylglycerolphosphate synthetase (EC 2.7.8.5), phosphatidylinositol synthetase (EC 2.7.8.11), and base exchange enzymes of ethanolamine, serine and inositol. These findings suggest that filarial worms can synthesize PC by two pathways, PE by three pathways, and PI by two pathways and fabricate PS, PG and CL.  相似文献   

16.
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus.  相似文献   

17.
This study describes the effects of short- and long-term ethanol treatment and withdrawal on the biosynthesis of the phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in hepatocytes isolated from rats, using isotopically labelled choline and ethanolamine as exogenous precursors. Our results demonstrate that short-term ethanol consumption increases the incorporation of exogenous polar bases into PC and PE, whereas long-term ethanol administration provokes a differential effect in both PC and PE biosynthesis via cytidine diphosphate derivatives (CDP-derivatives), decreasing PC synthesis and increasing the biosynthesis of PE. We suggest that the increased biosynthesis of PE after ethanol treatment results from changes in lipogenic substrates produced as a consequence of ethanol metabolism, whilst the specific inhibition of PC biosynthesis seems to be a consequence of alterations of enzymes involved in the CDP-choline pathway. With regard to the influence of ethanol on PE methylation to give PC, our results demonstrate that ethanol activates this pathway in short-term, as well as chronic ethanol treatment. Ethanol withdrawal returns the activity of the PC and PE pathways to control levels. The alterations in the biosynthesis of the main phospholipids, PC and PE, demonstrated in this study could be of a great physiological interest in determining the pathology of alcoholism.  相似文献   

18.
Cultured NIH 3T3 fibroblasts were employed to investigate the changes in the phospholipid metabolism induced by Ha-ras transformation. All phospholipid fractions were reduced in ras-transformed fibroblasts except phosphatidylethanolamine (PE). The incorporation of labeled choline and ethanolamine into phosphatidylcholine (PC), PE and their corresponding metabolites were elevated in a similar manner in the transformed cells. The enhanced uptake of choline and ethanolamine correlated with the activation of choline kinase and ethanolamine kinase. Similarly, the uptake of arachidonic, oleic and palmitic acids by PC and PE was higher in ras-cells. Acyl-CoA synthetases, which esterify fatty acid before their incorporation into lysophospholipids, were also activated. However, both CTP:phosphocholine-cytidylyltransferase and CTP:phosphoethanolamine-chytidyltransferase were inhibited in the transformed cells. This fact, taken together with the observed activation of choline- and ethanolamine kinases, led to accumulation of phosphocholine and phosphoethanolamine, which have been presumed to participate in the processes of tumor development. PC biosynthesis seemed to be carried out through the CDP-choline pathway, which was stimulated in the oncogenic cells, whereas PE was more likely, a product of phosphatidylserine decarboxylation rather than the CDP-ethanolamine pathway.  相似文献   

19.
Major components of polar lipids of halophilic phototrophic Ectothiorhodospira species were PG, CL, PC and PE. PA was only present in minor amounts. According to 14C-incorporation, polar lipids approximated to 75%–93% of the total lipid carbon. With increasing salinity, a strong increase in the portion of PG and a decrease in that of PE (especially in Ectothiorhodospira mobilis BN 9903) and CL (especially in E. halophila strains) were observed. Moreover, there was a significant increase in the excess negative charges of phospholipids upon increasing medium salinity. This increase was most dramatic in the slightly halophilic E. mobilis BN 9903, but quantitatively less important in both strains of E. halophila which had, however, a higher percentage of negative charges of their lipids. During salt-shift experiments, E. halophila BN 9630 responded to suddenly increased salinity by promoting the biosynthesis of PG and decreasing that of PC, CL and PE. Upon dilution stress, responses were reversed and resulted in a strong increase in PE biosynthesis. The effects of lipid charges and bilayer forming forces in stabilizing the membranes of Ectothiorhodospira species during salt stress are discussed.Abbreviations PC phosphatidylcholine - PG, PG-1, PG-2 phosphatidylglycerol - CL, CL-1, Cl-2 cardiolipin - PE phosphatidylethanol-amine - PA phosphatidic acid - NL nonpolar lipids - ori origin - TLC thin layer chromatography  相似文献   

20.
The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-beta-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号