首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A 2–8-fold increase in the activity of glutamate dehydrogenase (GDH), accompanied by an alteration of the GDH isoenzyme pattern, was observed in detached pea shoots floated on tap water (preincubated shoots). Sugars supressed the process, whereas NH + 4 and various metabolites as well as inhibitors of energy metabolism and protein synthesis were ineffective. The subcellular distribution pattern revealed evidence that the GDH isoenzymes are exclusively located in the mitochondrial matrix. The alterations in GDH activity occurring in preincubated shoots are restricted to the mitochondria.An experimental device suitable for studying the GDH function in isolated intact mitochondria has been established. Using [14C] citrate as the carbon source and hydrogen donor, the mitochondria synthesized considerable amounts of glutamate upon addition of NH + 4 . The rates of glutamate formation in dependency of increasing NH + 4 levels follow simple Michaelis-Menten kinetics. Half-saturation concentrations of NH + 4 of 3.6±1.2 mM; 1.9±0.06 mM and 1.6±0.1 mM were calculated for the mitochondria isolated from pea shoots, roots, and preincubated shoots, respectively. The results are discussed in relation to the possible role of GDH in NH+/4 assimilation at elevated intracellular NH+/4 levels.Abbreviations GDH Glutamate dehydrogenase - MDH malate dehydrogenase - GOT aspartate aminotransferase - SDH succinate dehydrogenase - HEPES 4-(2-hydroxyethyl)-1-piperazineethan-sulfonic acid - BSA bovine serum albumin - TPP thiamine pyrophosphate - DNP 2,4-dinitrophenol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCPIP 2,6-dichlorophenolindophenol Dedicated to Professor Dr. Maximilian Steiner on the occasion of his 75th birthday  相似文献   

2.
The glutamate dehydrogenase (gdh) gene of Escherichia coli was transferred into an ammonium assimilation deficient mutant (Asm-) of Rhizobium japonicum (CJ9) using plasmid pRP301, a broad host range derivative of RP4. Exconjugants capable of growth on ammonia as sole N-source occurred at a frequency of 6.8×10-6. Assimilatory GDH (NADP+) activity was detected in the strain carrying the E. coli gdh gene and the pattern of ammonia assimilation via GDH was similar to that of the Asm+ wild type strain. However, GDH mediated ammonia assimilation was not subject to regulation by l-glutamate. Nitrogenase activity was expressed ex planta in R. japonicum CJ9 harbouring the gdh gene, however, the presence of the gdh gene did not restore symbiotic effectiveness to the CJ9 Asm- strain in nodules. The gdh plasmid was maintained in approximately 90% of the isolates recovered from soybean nodules.Abbreviations gdh glutamate dehydrogenase - Asm- mutant ammonia assimilation deficient mutant  相似文献   

3.
N.M. Weare 《BBA》1978,502(3):486-494
A mutant of Rhodospirillum rubrum has been isolated, after mutagenesis with nitrosoguanidine, which is characterized by its inability to grow in the light on malate-minimal media with exogenous ammonia or alanine, poor growth on glutamine and vigorous growth on glutamate. This mutant produces low levels of a key NH+4 assimilation enzyme, glutamate synthase (NADPH-dependent). It also exhibits significant derepression of nitrogenase biosynthesis in the presence of ammonia or alanine, being 15% derepressed for the former and about 70% derepressed for the latter.Some of this mutant's fixed N2 is excreted into the medium as NH+4 (1 μmol NH+4 per mg cell protein in 50 h). Nitrogenase-mediated H2 production by this strain is considerable (42 μmol H2 per mg cell protein in 50 h), approximately twice that of the wild type assayed under similar conditions.These results demonstrate that genetic alteration of the photosynthetic N2-fixer's NH+4 assimilation system disrupts the tight coupling of N2 fixation and NH+4 assimilation normally observed in these organisms, enabling photochemical conversion steps to be utilized for the photoproduction of NH+4 and H2.  相似文献   

4.
We examined nitrate assimilation and root gas fluxes in a wild-type barley (Hordeum vulgare L. cv Steptoe), a mutant (nar1a) deficient in NADH nitrate reductase, and a mutant (nar1a;nar7w) deficient in both NADH and NAD(P)H nitrate reductases. Estimates of in vivo nitrate assimilation from excised roots and whole plants indicated that the nar1a mutation influences assimilation only in the shoot and that exposure to NO3 induced shoot nitrate reduction more slowly than root nitrate reduction in all three genotypes. When plants that had been deprived of nitrogen for several days were exposed to ammonium, root carbon dioxide evolution and oxygen consumption increased markedly, but respiratory quotient—the ratio of carbon dioxide evolved to oxygen consumed—did not change. A shift from ammonium to nitrate nutrition stimulated root carbon dioxide evolution slightly and inhibited oxygen consumption in the wild type and nar1a mutant, but had negligible effects on root gas fluxes in the nar1a;nar7w mutant. These results indicate that, under NH4+ nutrition, 14% of root carbon catabolism is coupled to NH4+ absorption and assimilation and that, under NO3 nutrition, 5% of root carbon catabolism is coupled to NO3 absorption, 15% to NO3 assimilation, and 3% to NH4+ assimilation. The additional energy requirements of NO3 assimilation appear to diminish root mitochondrial electron transport. Thus, the energy requirements of NH4+ and NO3 absorption and assimilation constitute a significant portion of root respiration.  相似文献   

5.
6.
In plants, glutamine synthetase (GS) is the enzyme that is mainly responsible for the assimilation of ammonium. Conversely, in microorganisms such as bacteria and Ascomycota, NADP(H)-dependent glutamate dehydrogenase (GDH) and GS both have important roles in ammonium assimilation. Here, we report the changes in nitrogen assimilation, metabolism, growth, and grain yield of rice plants caused by an ectopic expression of NADP(H)-GDH (gdhA) from the fungus Aspergillus niger in the cytoplasm. An investigation of the kinetic properties of purified recombinant protein showed that the fungal gdhA had 5.4–10.2 times higher V max value and 15.9–43.1 times higher K m value for NH4 +, compared with corresponding values for rice cytosolic GS as reported in the literature. These results suggested that the introduction of fungal GDH into rice could modify its ammonium assimilation pathway. We therefore expressed gdhA in the cytoplasm of rice plants. NADP(H)-GDH activities in the gdhA-transgenic lines were markedly higher than those in a control line. Tracer experiments by feeding with 15NH4 + showed that the introduced gdhA, together with the endogenous GS, directly assimilated NH4 + absorbed from the roots. Furthermore, in comparison with the control line, the transgenic lines showed an increase in dry weight and nitrogen content when sufficient nitrogen was present, but did not do so under low-nitrogen conditions. Under field condition, the transgenic line examined showed a significant increase in grain yield in comparison with the control line. These results suggest that the introduction of fungal gdhA into rice plants could lead to better growth and higher grain yield by enhancing the assimilation of ammonium.  相似文献   

7.
Studies that quantify plant δ15N often assume that fractionation during nitrogen uptake and intra-plant variation in δ15N are minimal. We tested both assumptions by growing tomato (Lycopersicon esculetum Mill. cv. T-5) at NH4+ or NO?3 concentrations typical of those found in the soil. Fractionation did not occur with uptake; whole-plant δ15N was not significantly different from source δ15 N for plants grown on either nitrogen form. No intra-plant variation in δ15N was observed for plants grown with NH+4. In contrast. δ15N of leaves was as much as 5.8% greater than that of roots for plants grown with NO?3. The contrasting patterns of intra-plant variation are probably caused by different assimilation patterns. NH+4 is assimilated immediately in the root, so organic nitrogen in the shoot and root is the product of a single assimilation event. NO?3 assimilation can occur in shoots and roots. Fractionation during assimilation caused the δ15N of NO?3 to become enriched relative to organic nitrogen; the δ15N of NO?3 was 11.1 and 12.9% greater than the δ15N of organic nitrogen in leaves and roots, respectively. Leaf δ15N may therefore be greater than that of roots because the NO?3 available for assimilation in leaves originates from a NO?3 pool that was previously exposed to nitrate assimilation in the root.  相似文献   

8.
Responses to excessive ammonium (NH4 +) were compared between two Arabidopsis ecotypes (Col-0, JA22) with respect to different photoperiods in hydroponics. In this study, we showed that external extra NH4 + led to severe growth suppression, accumulations of free NH4 + and amino acids and increased the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in shoots of the two Arabidopsis ecotypes. However, the levels of free NH4 + and total amino acids increased, whereas the activities of GS, NADH-dependent glutamate synthase and GDH decreased under the continuous light when compared with the light (16 h)–dark (8 h) cycle photoperiod. Statistical analyses suggested that strong correlations exist among the growth reduction, accumulations of free NH4 +, total amino acids and levels of GS activity in shoots under the high NH4 + stress regardless of the photoperiod regimes. Interestingly, under the continuous light, Col-0 showed more resistant to such growth reduction and maintained about onefold higher capability of converting excess free NH4 + into amino acids, with onefold higher GS activity induced by the external NH4 + when compared with JA22. In contrast, these differences were abolished between Col-0 and JA22 under the light–dark cycle condition. Taken together, our results conclude that the sensitivity to NH4 + of Col-0 and JA22 is changed between the continuous light and the light–dark cycle photoperiod, which is correlative to the alteration of the GS activity in shoots.  相似文献   

9.
Excessive use of nitrogen (N) fertilizer has increased ammonium (NH4+) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH4+ toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH4+ concentrations above 0.75 mM inhibited the growth of rice and caused NH4+ accumulation in both shoots and roots. Use of excessive NH4+ also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH4+ conditions, exogenous γ‐aminobutyric acid (GABA) treatment limited NH4+ accumulation in rice seedlings, reduced NH4+ toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH4+. Furthermore, we found that the activity of glutamine synthetase/NADH‐glutamate synthase (GS; EC 6.3.1.2/NADH‐GOGAT; EC1.4.1.14) in root increased gradually as the NH4+ concentration increased. However, when the concentration of NH4+ is more than 3 mM, GABA treatment inhibited NH4+‐induced increases in GS/NADH‐GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH4+. These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA‐dependent alleviation of ammonium toxicity in rice seedlings.  相似文献   

10.
The pattern of assimilation of NH4+ by Alnus glutinosa, a N2-fixing, nonleguminous angiosperm, was examined. Detached nodules, roots, and nodulated roots of intact plants were exposed to 13NH4+ for up to 15 minutes. Glutamine was the most highly labeled compound at all times; the only other compound labeled significantly was glutamate. Similar results were obtained after incubating soybean (L. merr) nodules and roots with 13NH4+. These observations and the results of pulse-labeling and inhibitor studies with nodules of Alnus were distinctly different from those predicted for the assimilation of NH4+ via glutamine synthetase and glutamate synthase and suggest that glutamate dehydrogenase may play a major role in the assimilation of exogenously supplied NH4+.  相似文献   

11.
The metabolic fate of gaseous nitrogen (15N2) fixed by free-living cultures of Rhizobia (root nodule bacteria) induced for their N2-fixation system was followed. A majority of the fixed 15N2 was found to be exported into the cell supernatant. For example, as much as 94% of the 15N2 fixed by Rhizobium japonicum (soybean symbiont) was recovered as 15NH4+ from the cell supernatant following alkaline diffusion. Several species of root nodule bacteria also exported large quantities of NH4+ from l-histidine. Evidence is presented that overproduction and export of NH4+ by free-living Rhizobia may be closely linked to the control of several key enzymes of NH4+ assimilation. For instance, NH4+ was found to repress glutamine synthetase whereas l-glutamate repressed glutamate synthase. Assimilation of NH4+ as nitrogen source for growth of Rhizobia was inhibited by glutamate. The mechanism of regulation of NH4+ production by root nodule bacteria is discussed.  相似文献   

12.
The metabolic fate of gaseous nitrogen (15N2) fixed by free-living cultures of Rhizobia (root nodule bacteria) induced for their N2-fixation system was followed. A majority of the fixed 15N2 was found to be exported into the cell supernatant. For example, as much as 94% of the 15N2 fixed by Rhizobium japonicum (soybean symbiont) was recovered as 15NH4+ from the cell supernatant following alkaline diffusion. Several species of root nodule bacteria also exported large quantities of NH4+ from l-histidine. Evidence is presented that overproduction and export of NH4+ by free-living Rhizobia may be closely linked to the control of several key enzymes of NH4+ assimilation. For instance, NH4+ was found to repress glutamine synthetase whereas l-glutamate repressed glutamate synthase. Assimilation of NH4+ as nitrogen source for growth of Rhizobia was inhibited by glutamate. The mechanism of regulation of NH4+ production by root nodule bacteria is discussed.  相似文献   

13.
Bowman DC  Paul JL 《Plant physiology》1988,88(4):1303-1309
Assimilation of NO3 and NH4+ by perennial ryegrass (Lolium perenne L.) turf, previously deprived of N for 7 days, was examined. Nitrogen uptake rate was increased up to four- to five-fold for both forms of N by N-deprivation as compared to N-sufficient controls, with the deficiency-enhanced N absorption persisting through a 48 hour uptake period. Nitrate, but not NH4+, accumulated in the roots and to a lesser degree in shoots. By 48 hours, 53% of the absorbed NO3 had been reduced, whereas 97% of the NH4+ had been assimilated. During the early stages (0 to 8 hours) of NO3 uptake by N-deficient turf, reduction occurred primarily in the roots. Between 8 and 16 hours, however, the site of reduction shifted to the shoots. Nitrogen form did not affect partitioning of the absorbed N between roots (40%) and shoots (60%) but did affect growth. Compared to NO3, NH4+ uptake inhibited root, but not shoot, growth. Total soluble carbohydrates decreased in both roots and shoots during the uptake period, principally the result of fructan metabolism. Ammonium uptake resulted in greater total depletion of soluble carbohydrates in the root compared to NO3 uptake. The data indicate that N assimilation by ryegrass turf utilizes stored sugars but is also dependent on current photosynthate.  相似文献   

14.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

15.
It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.  相似文献   

16.
Spontaneous ethylenediamine-resistant mutants of Azospirillum brasilense were selected on the basis of their excretion of NH4+. Two mutants exhibited no repression of their nitrogenase enzyme systems in the presence of high (20 mM) concentrations of NH4+. The nitrogenase activities of these mutants on nitrogen-free minimal medium were two to three times higher than the nitrogenase activity of the wild type. The mutants excreted substantial amounts of ammonia when they were grown either under oxygen-limiting conditions (1 kPa of O2) or aerobically on nitrate or glutamate. The mutants grew well on glutamate as a sole nitrogen source but only poorly on NH4Cl. Both mutants failed to incorporate [14C]methylamine. We demonstrated that nitrite ammonification occurs in the mutants. Wild-type A. brasilense, as well as the mutants, became established in the rhizospheres of axenically grown wheat plants at levels of > 107 cells per g of root. The rhizosphere acetylene reduction activity was highest in the preparations containing the mutants. When plants were grown on a nitrogen-free nutritional medium, both mutants were responsible for significant increases in root and shoot dry matter compared with wild-type-treated plants or with noninoculated controls. Total plant nitrogen accumulation increased as well. When they were exposed to a 15N2-enriched atmosphere, both A. brasilense mutants incorporated significantly higher amounts of 15N inside root and shoot material than the wild type did. The results of our nitrogen balance and 15N enrichment studies indicated that NH4+-excreting A. brasilense strains potentially support the nitrogen supply of the host plants.  相似文献   

17.
In unicellular algae, ammonium can be assimilated into glutamate through the action of glutamate dehydrogenase (GDH) or into glutamine through the sequential activities of glutamine synthetase and glutamate 2-oxoglutarate amidotransferase (GS-GOGAT pathway). We have shown that the first radio-labeled product of assimilation of 13NH4+ (t1/2= 10 min) was glutamine in the marine diatom Thalassiosira pseudonana (Hustedt). When GS-GOGAT was inhibited with methionine sulfoximine, the incorporation of radioactivity into both glutamine and glutamate was blocked, implying that the radio-labeled glutamate is formed from glutamine. Glutamine was also the first labeled product when the intracellular concentration of ammonium was elevated by preincubation with unlabeled ammonium. The results indicate that the GS-GOGAT pathway is the primary pathway for the assimilation of nitrogen in T. pseudonana.  相似文献   

18.
Biochemical and physiological parameters associated with nitrogen metabolism were measured in nodules and roots of glasshouse-grown clones of two symbiotically ineffective alfalfa (Medicago sativa L.) genotypes supplied with either NO3 or NH4+. Significant differences were observed between genotypes for nodule soluble protein concentrations and glutamine synthetase (GS) and glutamate synthase (GOGAT) specific activities, both in untreated controls and in response to applied N. Nodule soluble protein of both genotypes declined in response to applied N, while nodule GS, GOGAT, and glutamate dehydrogenase (GDH) specific activities either decreased or remained relatively constant. In contrast, no genotype differences were observed in roots for soluble protein concentrations and GS, GOGAT, and GDH specific activities, either in untreated controls or in response to applied N. Root soluble protein levels and GS and GOGAT specific activities of N-treated plants increased 2- to 4-fold within 4 days and then decreased between days 13 and 24. Root GDH specific activity of NH4+-treated plants increased steadily throughout the experiment and was 50 times greater than root GS or GOGAT specific activities by day 24.  相似文献   

19.
 Single isolates of a mycobiont isolated from Pisonia grandis R. Br., Pisolithus tinctorius (Pers.) Coker & Couch and Tylospora fibrillosa (Burt.) Donk were compared with regard to their relative abilities to produce key enzymes of inorganic nitrogen assimilation. Nitrate reductase (NR) activities in the P. grandis mycobiont and T. fibrillosa were significantly lower than in P. tinctorius. While specific activities for glutamate dehydrogenase (GDH) were higher in P. tinctorius than the other two fungi following NH4 + pre-treatment, glutamine synthetase (GS) activity did not differ significantly between the three fungi. In all three fungi, specific activities for GS were significantly higher than for GDH. NR activity was expressed in all three fungi regardless of the nitrogen source in the medium, but in P. tinctorius diminished following continued exposure to either NO3 , NH4 +, glutamine or NO3 + glutamine. The data are discussed in relation to nitrogen utilisation by the P. grandis mycobiont. Accepted: 16 October 1997  相似文献   

20.
Ammonium assimilation was followed in N-starved mycelia from the ectomycorrhizal Ascomycete Cenococcum graniforme. The evaluation of free amino acid pool levels after the addition of 5 millimolar NH4+ indicated that the absorbed ammonium was assimilated rapidly. Post-feeding nitrogen content of amino acids was very different from the initial values. After 8 hours of NH4+ feeding, glutamine accounted for the largest percentage of free amino acid nitrogen (43%). The addition of 5 millimolar methionine sulfoximine (MSX) to NH4+-fed mycelia caused an inhibition of glutamine accumulation with a corresponding increase in glutamate and alanine levels.

Using 15N as a tracer, it was found that the greatest initial labeling was into glutamine and glutamate followed by aspartate, alanine, and ornithine. On inhibiting glutamine synthetase using MSX, 15N enrichment of glutamate, alanine, aspartate, and ornithine continued although labeling of glutamine was quite low. Moreover, the incorporation of 15N label in insoluble nitrogenous compounds was lower in the presence of MSX. From the composition of free amino acid pools, the 15N labeling pattern and effects of MSX, NH4+ assimilation in C. graniforme mycelia appears to proceed via glutamate dehydrogenase pathway. This study also demonstrates that glutamine synthesis is an important reaction of ammonia utilization.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号