首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8(+) T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8(+) T cell proliferation and IFN-gamma secretion, and strong induction of long-lived CD8(+) T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8(+) T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8(+) T cell function, we show that in the partial, but not total, absence of CD4(+) T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8(+) T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.  相似文献   

2.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

3.
Although the role of CD4(+) T regulatory cells (Treg) in transplantation tolerance has been established, putative mechanisms of Treg induction and function in vivo remain unclear. TLR4 signaling has been implicated in the regulation of CD4(+)CD25(+) Treg functions recently. In this study, we first examined the role of recipient TLR4 in the acquisition of operational CD4(+) Treg following CD154 blockade in a murine cardiac transplant model. Then, we determined whether TLR4 activation in allograft tolerant recipients would reverse alloimmune suppression mediated by CD4(+) Treg. We document that donor-specific immune tolerance was readily induced in TLR4-deficient recipients by a single dose of anti-CD154 mAb, similar to wild-type counterparts. The function and phenotype of CD4(+) Treg in both wild-type and TLR4 knockout long-term hosts was demonstrated by a series of depletion experiments examining their ability to suppress the rejection of secondary donor-type test skin grafts and to inhibit alloreactive CD8(+) T cell activation in vivo. Furthermore, TLR4 activation in tolerant recipients following exogenous LPS infusion in conjunction with donor-type skin graft challenge, failed to break Treg-mediated immune suppression. In conclusion, our data reveals a distinctive property of CD4(+) Treg in tolerant allograft recipients, whose induction and function are independent of TLR4 signaling.  相似文献   

4.
The importance of CD4(+) T cells in the induction of an optimal antitumor immune response has largely been attributed to their ability to provide costimulatory signals for the priming of MHC class I-restricted CD8(+) CTL. However, many reports have demonstrated a requirement for CD4(+) T cells in the effector phase of tumor rejection indicating a greater responsibility for CD4(+) T cells in controlling tumor outgrowth. We demonstrate here a critical role for CD4(+) T cells in restraining initial tumor development through the inhibition of tumor angiogenesis. Using a tumor variant that is unresponsive to IFN-gamma, we show that tumor responsiveness to IFN-gamma is necessary for IFN-gamma-dependent inhibition of tumor angiogenesis by CD4(+) T cells. These studies reveal a pivotal role for CD4(+) T cells in controlling early tumor development through inhibition of tumor angiogenesis.  相似文献   

5.
CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells   总被引:10,自引:0,他引:10  
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis.  相似文献   

6.
The prerequisites of peripheral activation of self-specific CD4(+) T cells that determine the development of autoimmunity are incompletely understood. SJL mice immunized with myelin proteolipid protein (PLP) 139-151 developed experimental autoimmune encephalomyelitis (EAE) when pertussis toxin (PT) was injected at the time of immunization but not when injected 6 days later, indicating that PT-induced alterations of the peripheral immune response lead to the development of autoimmunity. Further analysis using IA(s)/PLP(139-151) tetramers revealed that PT did not change effector T cell activation or regulatory T cell numbers but enhanced IFN-gamma production by self-specific CD4(+) T cells. In addition, PT promoted the generation of CD4(+)CD62L(low) effector T cells in vivo. Upon adoptive transfer, these cells were more potent than CD4(+)CD62L(high) cells in inducing autoimmunity in recipient mice. The generation of this population was paralleled by higher expression of the costimulatory molecules CD80, CD86, and B7-DC, but not B7-RP, PD-1, and B7-H1 on CD11c(+)CD4(+) dendritic cells whereas CD11c(+)CD8alpha(+) dendritic cells were not altered. Collectively, these data demonstrate the induction of autoimmunity by specific in vivo expansion of CD4(+)CD62L(low) cells and indicate that CD4(+)CD62L(low) effector T cells and CD11c(+)CD4(+) dendritic cells may be attractive targets for immune interventions to treat autoimmune diseases.  相似文献   

7.
The Plasmodium falciparum circumsporozoite (CS) protein-based pre-erythrocytic stage vaccine, RTS,S, induces a high level of protection against experimental sporozoite challenge. The immune mechanisms that constitute protection are only partially understood, but are presumed to rely on Abs and T cell responses. In the present study we compared CS protein peptide-recalled IFN-gamma reactivity of pre- and RTS,S-immune lymphocytes from 20 subjects vaccinated with RTS,S. We observed elevated IFN-gamma in subjects protected by RTS,S; moreover, both CD4(+) and CD8(+) T cells produced IFN-gamma in response to CS protein peptides. Significantly, protracted protection, albeit observed only in two of seven subjects, was associated with sustained IFN-gamma response. This is the first study demonstrating correlation in a controlled Plasmodia sporozoite challenge study between protection induced by a recombinant malaria vaccine and Ag-specific T cell responses. Field-based malaria vaccine studies are in progress to validate the establishment of this cellular response as a possible in vitro correlate of protective immunity to exo-erythrocytic stage malaria vaccines.  相似文献   

8.
Plasmacytoid dendritic cells (pDC) are the body's main source of IFN-alpha, but, unlike classical myeloid DC (myDC), they lack phagocytic activity and are generally perceived as playing only a minor role in Ag processing and presentation. We show that murine pDC, as well as myDC, express Fcgamma receptors (CD16/CD32) and can use these receptors to acquire Ag from immune complexes (IC), resulting in the induction of robust Ag-specific CD4(+) and CD8(+) T cell responses. IC-loaded pDC stimulate CD4(+) T cells to proliferate and secrete a mixture of IL-4 and IFN-gamma, and they induce CD8(+) T cells to secrete IL-10 as well as IFN-gamma. In contrast, IC-loaded myDC induce both CD4(+) and CD8(+) T cells to secrete mainly IFN-gamma. These results indicate that pDC can shape an immune response by acquiring and processing opsonized Ag, leading to a predominantly Th2 response.  相似文献   

9.
Activation of T cells by Ag or stimulation of monocytes with inflammatory cytokines induces CD44 to bind to hyaluronan (HA), an adhesion event implicated in leukocyte-leukocyte, leukocyte-endothelial cell, and leukocyte-stromal cell interactions. We have previously shown that TNF-alpha induces CD44 sulfation in a leukemic cell line, which correlated with the induction of HA binding and CD44-mediated adhesion. In this study, we establish that TNF-alpha and IFN-gamma induce HA binding and the sulfation of CD44 in CD14(+) PBMC, whereas no induced HA binding or CD44 sulfation was observed in CD14(-) PBMC stimulated with TNF-alpha. Treatment of cells with NaClO(3), an inhibitor of sulfation, prevented HA binding in a significant percentage of CD14(+) PBMC induced by TNF-alpha, LPS, IL-1beta, or IFN-gamma. Furthermore, stimulation with TNF-alpha or IFN-gamma in the presence of NaClO(3) reduced the ability of isolated CD44H to bind HA, demonstrating a direct effect of CD44H sulfation on HA binding. In contrast, the transient induction of HA binding in T cells by PHA was not affected by NaClO(3), suggesting that activated T cells do not use sulfation as a mechanism to regulate HA binding. Overall, these results demonstrate that inducible sulfation of CD44H is one mechanism used by CD14(+) peripheral blood monocytes to induce HA binding in response to inflammatory agents such as TNF-alpha and IFN-gamma.  相似文献   

10.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

11.
Type 1 cell-mediated immunity might play an important role in protection from typhoid fever. We evaluated whether immunization with Salmonella enterica serovar Typhi (S. Typhi) strain CVD 908-htrA (a Delta aroC Delta aroD Delta htrA mutant), a leading live oral typhoid vaccine candidate, elicits specific CD4(+) and CD8(+) S. Typhi immune responses. Potent CTL responses and IFN-gamma secretion by CD8(+) T cells were detected following immunization with CVD 908-htrA in high (4.5 x 10(8) CFU) and low (5 x 10(7) CFU) dosages. S. Typhi-specific CTL were observed in six of eight vaccinees (four high and two low dose) after immunization. Mean increases in the frequency of IFN-gamma spot-forming cells (SFC) in the presence of S. Typhi-infected targets were 221 +/- 41 SFC/10(6) PBMC and 233 +/- 87 SFC/10(6) PBMC, in the high and low dose groups, respectively. Strong CD4(+) T cell responses were also observed. Increases in the IFN-gamma production to soluble S. Typhi flagella (STF) occurred in 82 and 38% of the volunteers who received the high and low doses, respectively. Robust correlations were observed between volunteers that responded with IFN-gamma SFC to stimulation with S. Typhi-infected cells and IFN-gamma released in response to stimulation with STF Ags (r = 0.822, p < 0.001) and between CTL and IFN-gamma production to STF (r = 0.818, p = 0.013). These data demonstrating the concomitant induction of both CD4- and CD8-mediated CMI are consistent with a significant role for type 1 immunity in controlling typhoid infection and support the continuing evaluation of CVD 908-htrA as a typhoid vaccine candidate.  相似文献   

12.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

13.
Active suppression mediated by CD4(+)CD25(+) T regulatory (Tr) cells plays an important role in the down-regulation of T cell responses to both foreign and self-Ags. Platelet factor 4 (PF4), a platelet-derived CXC chemokine, has been shown to strongly inhibit T cell proliferation as well as IFN-gamma and IL-2 release by isolated T cells. In this report we show that human PF4 stimulates proliferation of the naturally anergic human CD4(+)CD25(+) Tr cells while inhibiting proliferation of CD4(+)CD25(-) T cells. In coculture experiments we found that CD4(+)CD25(+) Tr cells exposed to PF4 lose the ability to inhibit the proliferative response of CD4(+)CD25(-) T cells. Our findings suggest that human PF4, by inducing Tr cell proliferation while impairing Tr cell function, may play a previously unrecognized role in the regulation of human immune responses. Because platelets are the sole source of PF4 in the circulation, these findings may be relevant to the pathogenesis of certain immune-mediated disorders associated with platelet activation, such as heparin-induced thrombocytopenia and autoimmune thrombocytopenic purpura.  相似文献   

14.
HIV diversity may limit the breadth of vaccine coverage due to epitope sequence differences between strains. Although amino acid substitutions within CD8(+) T cell HIV epitopes can result in complete or partial abrogation of responses, this has primarily been demonstrated in effector CD8(+) T cells. In an HIV-infected Kenyan cohort, we demonstrate that the cross-reactivity of HIV epitope variants differs dramatically between overnight IFN-gamma and longer-term proliferation assays. For most epitopes, particular variants (not the index peptide) were preferred in proliferation in the absence of corresponding overnight IFN-gamma responses and in the absence of the variant in the HIV quasispecies. Most proliferating CD8(+) T cells were polyfunctional via cytokine analyses. A trend to positive correlation was observed between proliferation (but not IFN-gamma) and CD4 counts. We present findings relevant to the assessment of HIV vaccine candidates and toward a better understanding of how viral diversity is tolerated by central and effector memory CD8(+) T cells.  相似文献   

15.
The phenomenon whereby the host immune system responds to only a few of the many possible epitopes in a foreign protein is termed immunodominance. Immunodominance occurs not only during microbial infection but also following vaccination, and clarification of the underlying mechanism may permit the rational design of vaccines which can circumvent immunodominance, thereby inducing responses to all epitopes, dominant and subdominant. Here, we show that immunodominance affects DNA vaccines and that the effects can be avoided by the simple expedient of epitope separation. DNA vaccines encoding isolated dominant and subdominant epitopes induce equivalent responses, confirming a previous demonstration that coexpression of dominant and subdominant epitopes on the same antigen-presenting cell (APC) is central to immunodominance. We conclude that multiepitope DNA vaccines should comprise a cocktail of plasmids, each with its own epitope, to allow maximal epitope dispersal among APCs. In addition, we demonstrate that subdominant responses are actively suppressed by dominant CD8(+) T-cell responses and that gamma interferon (IFN-gamma) is required for this suppression. Furthermore, priming of CD8(+) T cells to a single dominant epitope results in strong suppression of responses to other normally dominant epitopes in immunocompetent mice, in effect rendering these epitopes subdominant; however, responses to these epitopes are increased 6- to 20-fold in mice lacking IFN-gamma. We suggest that, in agreement with our previous observations, IFN-gamma secretion by CD8(+) T cells is highly localized, and we propose that its immunosuppressive effect is focused on the APC with which the dominant CD8(+) T cell is in contact.  相似文献   

16.
CTLA-4 (CD152) is actively involved in down-regulating T cell activation and maintaining lymphocyte homeostasis. Our earlier studies showed that targeted engagement of CTLA-4 can down-modulate T cell response and suppress allo- and autoimmune responses. In this study, we report that targeted CTLA-4 engagement can induce immune tolerance to a specific target through selective induction of an Ag-specific CD4(+)CD25(+)CTLA-4(high) regulatory T cell (Treg cell) population. Allogeneic cells coated with anti-CTLA-4 Ab induced immune hyporesponsiveness through suppression of proinflammatory cytokines IFN-gamma and IL-2, and up-regulation of the regulatory cytokines IL-10, TGF-beta1, and IL-4, presumably through the engagement of CTLA-4 on activated T cells. Although rechallenge with alloantigen failed to break the unresponsiveness, a transient recovery from tolerance was observed in the presence of high concentrations of exogenous IL-2, saturating concentrations of neutralizing anti-TGF-beta1 and anti-IL-10 Abs, and blocking anti-CTLA-4 Ab, and upon depletion of CD4(+)CD25(+) Treg cells. The CD4(+)CD25(+)CTLA-4(high) Treg cells from tolerant mice suppressed the effector function of CD25(-) T cells from Ag-primed mice. Adoptive transfer of these Treg cells into Ag-primed mice resulted in a significantly reduced alloantigen-specific response. Further characterization demonstrated that the Treg cells with memory phenotype (CD62L(-)) were more potent in suppressing the alloantigen-specific T cell response. These results strongly support that the targeted engagement of CTLA-4 has therapeutic potential for the prevention of transplant rejection.  相似文献   

17.
A single intratumoral injection of IL-12 and GM-CSF-encapsulated microspheres induces the complete regression of advanced spontaneous tumors in her-2/neu transgenic mice. However, tumor regression in this model is transient and long-term cure is not achieved due to recurrence. Posttherapy molecular analysis of immune activation/suppression markers within the tumor microenvironment demonstrated a dramatic up-regulation of IFN-gamma and a concomitant down-regulation of Forkhead/winged-helix protein 3 (Foxp3), TGFbeta, and IL-10 expression. Therapy-induced reversion of immune suppression was transient since all three markers of suppression recovered rapidly and surpassed pretherapy levels by day 7 after treatment, resulting in tumor resurgence. Repeated treatment enhanced short-term tumor regression, but did not augment long-term survival. Serial long-term analysis demonstrated that although chronic stimulation enhanced the IFN-gamma response, this was countered by a parallel increase in Foxp3, TGFbeta, and IL-10 expression. Analysis of tumor-infiltrating T lymphocyte populations showed that the expression of Foxp3 and IL-10 was associated with CD4(+)CD25(+) T cells. Repeated treatment resulted in a progressive increase in tumor-infiltrating CD4(+)CD25(+)Foxp3(+) T suppressor cells establishing their role in long-term neutralization of antitumor activity. Analysis of tumor-infiltrating CD8(+) T cells demonstrated that although treatment enhanced IFN-gamma production, antitumor cytotoxicity was diminished. Monitoring of CD8(+) T cells that specifically recognized a dominant MHC class I her-2/neu peptide showed a dramatic increase in tetramer-specific CD8(+) T cells after the first treatment; however, continuous therapy resulted in the loss of this population. These results demonstrate that both enhanced suppressor activity and deletion of tumor-specific T cells are responsible for the progressive loss of efficacy that is associated with chronic immune therapy.  相似文献   

18.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

19.
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-gamma) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-gamma SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-gamma(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine.  相似文献   

20.
Zhong J  Rist M  Cooper L  Smith C  Khanna R 《PloS one》2008,3(9):e3256
Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV) disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+) and CD4(+) T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+) and CD4(+) T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号