首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

β2-Microglobulin (β2-m) forms amyloid fibrils in patients undergoing long-term hemodialysis. K3 peptide, a Ser20-Lys41 fragment of β2-m, has been known to form fibrils over a wide range of pH and solvent conditions. Recent solid-state NMR has revealed that K3 oligomer adopts a parallel U-shaped β-strand-turn-β-strand motif. In order to investigate the stability and morphologies of K3 oligomers with different sizes (dimer, trimer, and tetrameri and organizations (single and double layers), several all-atom molecular dynamics simulations were conducted at 310 K and pH 2 in water and 2,2,2-trifluoroethanol (TFE). For single-layered organizations, our results show that TFE destabilizes the stacking of K3 peptides due to the fact that TFE weakens the intermolecular hydrophobic interactions of K3 oligomers. In addition, we also identified that the loop region is stabilized by the hydrophobic cluster involving resides Y7, Fll, and I16. Our results further suggest that K3 tetramer is a potential minimal nucleus seed for the formation of K3 protofibrils. For dou-ble-layered organizations in water, our data demonstrate that K3 peptides can form various stable assemblies through different interfacial arrangements, such as NN, NC, and CC, by different driving forces. We further propose that the stacking of different interfaces between two facing β-sheets of K3 peptides could be related to different fibril morphologies, which is in good agreement with the previous experimental results, showing that K3 protofibrils associated to formed mature fibrils with a wide range of diameters from 4 to 15 nm when they were transferred from 20% (v/v) TFE to aqueous solution.  相似文献   

2.
Amyloid fibril formation by peptide LYS (11-36) in aqueous trifluoroethanol   总被引:1,自引:0,他引:1  
Peptide LYS (11-36), derived from the beta-sheet region of T4 lysozyme, forms an amyloid fibril in aqueous trifluoroethanol (TFE) at elevated temperature. The peptide has a moderate alpha-helix content in 20 and 50% (v/v) TFE solution; large quantities of fibrils were formed after incubation at 55 degrees C for 2 weeks as monitored by a thioflavin T fluorescence assay. No fibrils were observed when the peptide initially existed predominantly as a random coil or as a complete alpha helix. Our results suggest that a moderate amount of alpha helix and random coil present in the peptide initially facilitates the fibril-formation process, but a high alpha-helix content inhibits fibril formation. Transmission electron microscopy revealed several types of fibril morphologies at different TFE concentrations. The fibrils were highly twisted and consisted of interleaved protofilaments in 50% TFE, while smooth and flat ribbonlike fibrils were found in 20% TFE. In 50% TFE, the fibril growth rate of LYS (11-36) was found to depend strongly on peptide concentration and seeding but was insensitive to solution pH and ionic strength.  相似文献   

3.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

4.
Although the formation of an alpha-helix or partial unfolding of proteins has been suggested to be important for amyloid fibrils to form in alcohols, the exact mechanism involved remains elusive. To obtain further insight into the development of amyloid fibrils, we used a 22-residue peptide, K3, corresponding to Ser20 to Lys41 of intact beta2-microglobulin. Although K3 formed an alpha-helix at high concentrations of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in 10 mM HCl (pH approximately 2), the helical content was not high, indicating a low preference to do so. The partly alpha-helical conformation was converted with time into a highly ordered beta-sheet with a fibrillar morphology as revealed by atomic force microscopy. Importantly, the TFE and HFIP-induced fibrillation exhibited a concentration dependence with a maximum at approximately 20 and approximately 10% (v/v), respectively, slightly below the concentrations at which these alcohols form dynamic clusters. Focusing on the similarity of the effects of alcohol on proteins with those of sodium dodecyl sulfate (SDS), we examined the effects of SDS on K3. SDS also induced fibrils to form with a maximum at approximately 4 mM, slightly below the critical micelle concentration. These results indicate that, with an increase in the concentration of hydrophobic cosolvent (TFE, HFIP, or SDS), a delicate balance of decreasing hydrophobic interactions and increasing polar interactions (i.e. H-bonds) in and between peptides leads to the formation of ordered fibrils with a bell-shaped concentration dependence.  相似文献   

5.
To obtain insight into the mechanism of fibril formation, we examined the effects of ultrasonication, a strong agitator, on beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis. Upon sonication of an acid-unfolded beta2-m solution at pH 2.5, thioflavin T fluorescence increased markedly after a lag time of 1-2 h with a simultaneous increase of light scattering. Atomic force microscopy images showed the formation of a large number of short fibrils 3 nm in diameter. When the sonication-induced fibrils were used as seeds in the next seeding experiment at pH 2.5, a rapid and intense formation of long fibrils 3 nm in diameter was observed demonstrating seed-dependent fibril growth. We then examined the effects of sonication on the native beta2-m at neutral pH, conditions under which amyloid deposits occur in patients. In the presence of 0.5 mm sodium dodecyl sulfate, a model compound of potential trigger and stabilizer of amyloid fibrils in patients, a marked increase of thioflavin T fluorescence was observed after 1 day of sonication at pH 7.0. The products of sonication caused the accelerated fibril formation at pH 7.0. Atomic force microscopy images showed that the fibrils formed at pH 7.0 have a diameter of more than 7 nm, thicker than those prepared at pH 2.5. These results indicate that ultrasonication is one form of agitation triggering the formation of amyloid fibrils of beta2-m, producing fibrils adapted to the respective pH.  相似文献   

6.
Human beta(2)-microglobulin (beta(2)m) forms amyloid fibrils in hemodialysis related amyloidosis. Peptides spanning the beta strands of beta(2)m have been shown to form amyloid fibrils in isolation. We have studied the self-association of a 13-residue peptide Ac-DWSFYLLYYTEFT-am (Pbeta(2)m) spanning one of the beta-strands of human beta(2)-microglobulin when dissolved in various organic solvents such as methanol (MeOH), trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and dimethylsulfoxide. We have observed that Pbeta(2)m forms amyloid fibrils when diluted from organic solvents into aqueous buffer at pH 7.0 as judged by increase in thioflavin T fluorescence. Fibril formation was observed to depend on the solvents in which peptide stock solutions were prepared. Circular dichroism spectra indicated propensity for helical conformation in MeOH, TFE, and HFIP. In buffer, beta-structure was observed irrespective of the solvent in which the peptide stock solutions were prepared. Atomic force microscopy images obtained by drying the peptide on mica from organic solvents indicated the ability of Pbeta(2)m to self-associate to form nonfibrillar structures. Morphology of the structures was dependent on the solvent in which the peptide was dissolved. Peptides that have the ability to self-associate such as amyloid-forming peptides would be attractive candidates for the generation of self-assembled structures with varying morphologies by appropriate choice of surfaces and solvents for dissolution.  相似文献   

7.
We have proposed that amyloid fibrils contain subunits (protofibrils) that are formed from beta-strands wound into continuous 2-3 nm-diameter beta-helices. Subsequent lateral aggregation of the beta-helices to form the widely observed 5-12 nm-diameter fibrils could be promoted by hydrophobic residues on the exterior of the postulated beta-helix. A number of short peptide fragments of the amyloid-beta (A beta) proteins, such as A beta34-42 [LMVGGVVIA], the nine-residue, carboxyl-terminal portion of A beta1-42, can also form amyloid fibrils. In the present study, it was found that a beta-helix formed from A beta34-42 accounts for features suggested by published rotational resonance solid-state NMR data, including an anomalous conformation about the Gly-37-Gly-38 region and exaggerated pleating. An analogue of A beta34-42 was synthesized in which the hydrophobic groups on the exterior of the postulated beta-helix were replaced with glutamates, giving LEVGGVEIE. The analogue was completely soluble at pH 7, but at pH 2.5 it produced 2-2.5 nm-diameter fibrils which did not associate into larger-diameter bundles. The results of this study support the proposal that amyloid fibrils are formed from beta-helical subunits.  相似文献   

8.
Sasahara K  Yagi H  Naiki H  Goto Y 《Biochemistry》2007,46(11):3286-3293
Heat-triggered conversion of the salt-induced thin and flexible protofibrils into well-organized thick and straight mature amyloid fibrils was achieved with beta2-microglobulin, a protein responsible for dialysis-related amyloidosis. First, protofibrils that formed spontaneously at pH 2.5 in the presence of 0.5 M NaCl were aggregated by agitating the solution. Second, the aggregated protofibrils were heated in a cell of a differential scanning calorimeter (DSC). The DSC thermogram showed an exothermic transition with sigmoidal temperature dependence, resulting in a remarkably large decrease in the heat capacity of the solution. Third, on the basis of electron microscopy together with circular dichroism spectroscopy, seeding experiments, and a thioflavin T binding assay, the sigmoidal transition was found to represent the conversion of protofibrils into mature amyloid fibrils. Furthermore, DSC thermograms obtained at various heating rates revealed that the transition curve depends on the heating rate, implying that the effects of heat associated with the conversion to the mature fibrils are kinetically controlled, precluding an interpretation in terms of equilibrium thermodynamics. Taken together, these results highlight the importance of the change in heat capacity in addressing the biological significance of interactions between solvent water and amyloid fibrils and, moreover, in detecting the formation of amyloid fibrils.  相似文献   

9.
Amyloid fibrils are protein aggregates implicated in several amyloidotic diseases. Cellular membranes with local decrease in pH and dielectric constant are associated with the amyloid formation. In this study, domain 1 of cell adhesion molecule CD2 (CD2-1) is used for studying amyloid fibril formation in a water/trifluoroethanol (TFE) mixture. CD2-1 is an all beta-sheet protein similar in topology to the amyloidogenic light chain variable domain, which deposits as amyloid in light chain amyloidosis at acidic pH. When incubated at pH 2.0 in the presence of 18% TFE, CD2-1 initiates the process to assemble into amyloid fibrils. It has been shown that TFE induces CD2-1 conformational change with a chemical transition (C(m)) of 18% (v/v). ANS (1-anilinonapthalene-8-sulfonic acid) binding was used to show that the hydrophobic surface becomes exposed under these solvent conditions. Our studies indicate that partial formation of a non-native conformation and the exposure of the hydrophobic interior could be the origins of oligomerization and fibril formation of CD2-1.  相似文献   

10.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

11.
The titration of an aqueous solution of a de novo designed peptide with trifluoroethanol (TFE) shows complete helix formation with the addition of only 30% TFE. A molecular simulation of the peptide, in which a single shell of TFE molecules initially surrounds the peptide, reveals preferred sites of solvent interaction. The TFE molecules show greater preference for the hydrophobic compared with hydrophilic side chains. The helix-enhancing ability of TFE in aqueous solution may be rationalized in terms of stabilizing the hydrophobic collapse of apolar side chains of the formed helix. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
We have examined the chemical dissection and subsequent reassembly of fibrils formed by a ten-residue peptide to probe the forces that drive the formation of amyloid. The peptide, TTR(10-19), encompasses the A strand of the inner beta-sheet structure that lines the thyroid hormone binding site of the human plasma protein transthyretin. When dissolved in water under low pH conditions the peptide readily forms amyloid fibrils. Electron microscopy of these fibrils indicates the presence of long (>1000 nm) rigid structures of uniform diameter (approximately 14 nm). Addition of urea (3 M) to preformed fibrils disrupts these rigid structures. The partially disrupted fibrils form flexible ribbon-like arrays, which are composed of a number of clearly visible protofilaments (3-4 nm diameter). These protofilaments are highly stable, and resist denaturation in 6 M urea at 75 degrees C over a period of hours. High concentrations (>50%, v/v) of 2,2,2-trifluoroethanol also dissociate TTR(10-19) fibrils to the constituent protofilaments, but these slowly dissociate to monomeric, soluble peptides with extensive alpha-helical structure. Dilution of the denaturant or co-solvent at the stage when dissociation to protofilaments has occurred results in the efficient reassembly of fibrils. These results indicate that assembly of fibrils from protofilaments involves relatively weak and predominantly hydrophobic interactions, whereas assembly of peptides into protofilaments involves both electrostatic and hydrophobic forces, resulting in a highly stable and compact structures.  相似文献   

13.
To understand how the conformational heterogeneity of protofibrils formed by any protein, as well as the mechanisms of their formation, are modulated by a change in aggregation conditions, we studied the formation of amyloid protofibrils by barstar at low pH by multiple structural probes in the presence of hexafluoroisopropanol (HFIP). In the presence of 10% HFIP, aggregation proceeds with the transient formation of spherical oligomers and leads to the formation of both protofibrils and fibrils. Curly short protofibrils and fibrils are seen to form early during the aggregation reaction, and both are seen to grow gradually in length during the course of the reaction. Atomic force microscopy images reveal that the HFIP-induced protofibrils are long (~300 nm in length), curly, and beaded and appear to be composed primarily of β-sheet bilayers, with heights of ~2.4 nm. The protofibrils formed in the presence of HFIP differ in both their structures and their stabilities from the protofibrils formed either in the absence of alcohol or in the presence of a related alcohol, trifluoroethanol (TFE). Aggregation appears to proceed via an isodesmic polymerization mechanism. Internal structure in the growing aggregates changes in two stages during protofibril formation. In the first stage, an α-helix-rich oligomeric intermediate is formed. In the second stage, the level of β-sheet structure increases at the expense of some α-helical structure. The second stage itself appears to occur in two distinct steps. The creation of thioflavin T binding sites occurs concomitantly with aggregate elongation and is seen to precede the change in secondary structure. The long straight fibrils with characteristic heights of 8-10 nm, which form in the course of the HFIP-induced aggregation reaction, have not been observed to form either in the absence of alcohol or in the presence of TFE.  相似文献   

14.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

15.
beta 2-Microglobulin-related (A beta 2M) amyloidosis is a common and serious complication in patients on long-term hemodialysis, and beta 2-microglobulin (beta 2-m) is a major structural component of A beta 2M amyloid fibrils. Fluorescence spectroscopic analysis with thioflavin T and electron microscopic study revealed that A beta 2M amyloid fibrils readily depolymerize into monomeric beta 2-m at a neutral to basic pH. Circular dichroism analysis revealed that soon after the initiation of the depolymerization reaction at pH 7.5, the characteristic spectrum of beta 2-m in A beta 2M amyloid fibrils changes to resemble that of monomeric beta 2-m at pH 7.5. Apolipoprotein E (apoE), a representative amyloid-associated protein, formed a stable complex with A beta 2M amyloid fibrils and inhibited the depolymerization of A beta 2M amyloid fibrils dose-dependently in a range of 0--10 microM. These results showed that apoE could enhance the deposition of amyloid fibrils in vivo, possibly by binding directly to the surface of the fibrils and stabilizing the conformation of beta 2-m in the fibrils.  相似文献   

16.
Peptide self-assembly leading to cross-β amyloid structures is a widely studied phenomenon because of its role in amyloid pathology and the exploitation of amyloid as a functional biomaterial. The self-assembly process is governed by hydrogen bonding, hydrophobic, aromatic π-π, and electrostatic Coulombic interactions. A role for aromatic π-π interactions in peptide self-assembly leading to amyloid has been proposed, but the relative contributions of π-π versus general hydrophobic interactions in these processes are poorly understood. The Ac-(XKXK)(2)-NH(2) peptide was used to study the contributions of aromatic and hydrophobic interactions to peptide self-assembly. Position X was globally replaced by valine (Val), isoleucine (Ile), phenylalanine (Phe), pentafluorophenylalanine (F(5)-Phe), and cyclohexylalanine (Cha). At low pH, these peptides remain monomeric because of repulsion of charged lysine (Lys) residues. Increasing the solvent ionic strength to shield repulsive charge-charge interactions between protonated Lys residues facilitated cross-β fibril formation. It was generally found that as peptide hydrophobicity increased, the required ionic strength to induce self-assembly decreased. At [NaCl] ranging from 0 to 1000 mM, the Val sequence failed to assemble. Assembly of the Phe sequence commenced at 700 mM NaCl and at 300 mM NaCl for the less hydrophobic Ile variant, even though it displayed a mixture of random coil and β-sheet secondary structures over all NaCl concentrations. β-Sheet formation for F(5)-Phe and Cha sequences was observed at only 20 and 60 mM NaCl, respectively. Whereas self-assembly propensity generally correlated to peptide hydrophobicity and not aromatic character the presence of aromatic amino acids imparted unique properties to fibrils derived from these peptides. Nonaromatic peptides formed fibrils of 3-15 nm in diameter, whereas aromatic peptides formed nanotape or nanoribbon architectures of 3-7 nm widths. In addition, all peptides formed fibrillar hydrogels at sufficient peptide concentrations, but nonaromatic peptides formed weak gels, whereas aromatic peptides formed rigid gels. These findings clarify the influence of aromatic amino acids on peptide self-assembly processes and illuminate design principles for the inclusion of aromatic amino acids in amyloid-derived biomaterials.  相似文献   

17.
The Aβ(16–22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16–22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16–22) sequence which has FF at the 19th and 20th positions would be a good model to investigate peptide self-assembly in the context of aromatic interactions. In this study, self-assembly of Aβ(16–22) and its aromatic analogs obtained by replacement of F19, F20 or both by Y or W was examined after dissolution in fluorinated alcohols and their aqueous mixtures in solvent cluster forming conditions. The results indicate that the presence of aromatic residues Y and W and their position in the sequence plays an important role in self-assembly. We observe the formation of amyloid fibrils and other self-assembled structures such as spheres, rings and beads. Our results indicate that 20% HFIP is more favourable for amyloid fibril formation as compared to 20% TFE, when F is replaced with Y or W. The dissolution of peptides in DMSO followed by evaporation of solvent and dissolution in water appears to greatly influence peptide conformation, morphology and cross-β content of self-assembled structures. Our study shows that positioning of aromatic residues F, Y and W have an important role in directing self-assembly of the peptides.  相似文献   

18.
Increasing numbers of proteins have been found to aggregate into insoluble fibers, collectively referred to as amyloid fibrils. To address the conformational stability of amyloid fibrils, we studied the effects of dimethylsulfoxide (DMSO), 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on beta(2)-microglobulin amyloid fibrils by circular dichroism, thioflavin T fluorescence, light scattering, and electron microscopy. When measured by circular dichroism and thioflavin T fluorescence, HFIP, and TFE dissolved the fibrils, producing predominantly helical conformations. However, these alcohols did not dissolve the amyloid fibrils completely as monitored by light scattering and electron microscopy. On the other hand, DMSO completely dissolved the amyloid fibrils although a high concentration [i.e., 80% (v/v)] was required. These results are consistent with the important role of hydrogen bonds in stabilizing amyloid fibrils.  相似文献   

19.
Although the stability of globular proteins has been studied extensively, that of amyloid fibrils is scarcely characterized. Beta2-microglobulin (beta2-m) is a major component of the amyloid fibrils observed in patients with dialysis-related amyloidosis. We studied the effects of guanidine hydrochloride on the amyloid fibrils of beta2-m, revealing a cooperative unfolding transition similar to that of the native state. The stability of amyloid fibrils increased on the addition of ammonium sulfate, consistent with a role of hydrophobic interactions. The results indicate that the analysis of unfolding transition is useful to obtain insight into the structural stability of amyloid fibrils.  相似文献   

20.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号