首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study describes a comparative analysis on the fluorescence properties of the manganese-stabilizing protein (MSP), a synthetic peptide corresponding to its C terminus and a 7:1 (molar ratio) mixture of N-acetyl-tyrosine and N-acetyl-tryptophan, respectively, together with reconstitution experiments of oxygen evolution in MSP-depleted photosystem II (PS II) membrane fragments. It is found: (i) at neutral pH, the fluorescence from Trp241 is strongly diminished in MSP solutions, whereas it highly dominates the overall emission from the C-terminus peptide; (ii) at alkaline pH, the emission of Tyr and Trp is quenched in both, MSP and C-terminus peptide, with increasing pH but the decline curve is shifted by about two pH units towards the alkaline region in MSP; (iii) a drastically different pattern emerges in the 7:1 mixture where the Trp emission even slightly increases at high pH; (iv) the anisotropy of the fluorescence emission is wavelength-independent (310-395 nm) and indicative of one emitter type (Trp) in the C-terminus peptide and of two emitter types (Tyr, Trp) in MSP; and (v) in MSP-depleted PS II membrane fragments the oxygen evolution is restored (up to 85% of untreated control) by rebinding of MSP but not by the C-terminus peptide, however, the presence of the latter diminishes the restoration effect of MSP. A quenching mechanism of Trp fluorescence by a next neighbored tyrosinate in the peptide chain is proposed and the relevance of the C terminus of MSP briefly discussed.  相似文献   

2.
The present study describes a comparative analysis on the fluorescence properties of the manganese-stabilizing protein (MSP), a synthetic peptide corresponding to its C terminus and a 7:1 (molar ratio) mixture of N-acetyl-tyrosine and N-acetyl-tryptophan, respectively, together with reconstitution experiments of oxygen evolution in MSP-depleted photosystem II (PS II) membrane fragments. It is found: (i) at neutral pH, the fluorescence from Trp(241) is strongly diminished in MSP solutions, whereas it highly dominates the overall emission from the C-terminus peptide; (ii) at alkaline pH, the emission of Tyr and Trp is quenched in both, MSP and C-terminus peptide, with increasing pH but the decline curve is shifted by about two pH units towards the alkaline region in MSP; (iii) a drastically different pattern emerges in the 7:1 mixture where the Trp emission even slightly increases at high pH; (iv) the anisotropy of the fluorescence emission is wavelength-independent (310-395 nm) and indicative of one emitter type (Trp) in the C-terminus peptide and of two emitter types (Tyr, Trp) in MSP; and (v) in MSP-depleted PS II membrane fragments the oxygen evolution is restored (up to 85% of untreated control) by rebinding of MSP but not by the C-terminus peptide, however, the presence of the latter diminishes the restoration effect of MSP. A quenching mechanism of Trp fluorescence by a next neighbored tyrosinate in the peptide chain is proposed and the relevance of the C terminus of MSP briefly discussed.  相似文献   

3.
Štys  D.  Šiffel  P.  Hunalová  I.  Nebesářová  J. 《Photosynthetica》1999,37(2):325-334
Experiments were performed to distinguish some of the proposed mechanisms by which thylakoid membranes regulate the performance of photosynthetic apparatus in relation to non-photochemical quenching, qN. Aliphatic diamines were used as uncouplers of transmembrane H+ gradient as they can be transported across the membrane at the expense of hydrogen cations. Diamines did not induce changes in low-temperature fluorescence emission but induced different changes in membrane ultrastructure. Positively charged peptides did not affect membrane ultrastructure but blocked qN. In addition, they caused an increase of low temperature fluorescence emission between 710 and 720 nm. For control peptide, the maximal fluorescence increase was found at 715 nm. Fragments of light-harvesting complex 2 in their phosphorylated and non-phosphorylated form shifted the position of this increase. We believe that peptides bind to membrane surface and reduce the mobility of membrane components whose migration is needed for observation of qN. Phosphorylated and non-phosphophorylated LHC2 fragments bind to different binding sites for corresponding forms of the protein. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Principles and techniques are discussed for measuring with high topological resolution local emission in fluorescing objects, using photographic negatives.Determination of fluorescence intensities is only possible when an unequivocal relation between the original local fluorescence emission intensities of the object, and the transmittances or densities recorded in the microfluorophotograph is known. This relation is formulated in the theoretical part.From this relation it can be concluded that the recorded intensities can be measured optimally when the optical density values produced by the fluorescence emission fall in the range of the linear portion of the Hurter and Driffield curve. In order to obtain this situation, a uniform, low-level preexposure of the film emulsion to (white) light is carried out prior to the actual fluorescence emission exposure. This pre-exposure acts to elevate the signal exposure to the linear (steeper) part of the H.-D. curve.Inhomogeneity of the excitation beam in the object field, or differences in film emulsion response to the light exposure, will result in erroneous optical densities recorded in the photographic negative. Correction for such artifacts could be obtained by addition of a low concentration of fluorophore to the mounting medium of the microscopic preparation. The overall fluorescent background produced in this way, enabled calibration of local fluorescence intensities in different parts of one fluorophotographic negative, and also of the intensities in different negatives taken from one microscopic preparation.The validity of this approach was checked by comparing data obtained from several photographic negatives of the same quinacrine-stained metaphase, taken with different exposure times to imitate fluctuations in excitation illumination, after conversion of the scanning data into emission intensity values with an algorithm based on the proposed theoretical relation.In another experiment, fluorescence emission intensities of Feulgenstained chromosomes which had been measured with a cytofluorometer, were compared with results obtained by conversion of the scanning data measured in the fluorophotographic negatives of the same metaphases. Both types of experiment confirmed the applicability of the procedure described.Supported by grant nr 28-169 of the Praeventiefonds, The Hague  相似文献   

5.
It was shown in an earlier report (Turner et al., 1989, Biochem. Cell Biol. 67; 179-186) that the anomalous steady-state fluorescence emission spectra observed for the protein S-100b in aqueous solution at pH 7.5 contains a long-lived fluorescence decay component. In this study, a peptide consisting of residues 11 to 27 of the beta-subunit, was investigated. 11Ile-Asp-Val-Phe-His15-Gln-Tyr-Ser-Gly-Arg20-Glu-Gly- Asp-Lys-His25-Lys-Leu27 Fluorescence lifetimes were measured at the emission maximum and in the red edge of the spectrum. At wavelengths greater than 320 nm, the data was best fit with three exponentials. The third exponential gave lifetimes of 13.1 ns and 15.9 ns when the peptide was dissolved in the solvents propane-2-ol and propane-1,2-diol, respectively (lambda EX = 275 nm, lambda EM = 350 nm). These fluorescence lifetimes are similar to that observed for a decay component of native S-100b in the red edge of the emission, suggesting that the 1 degrees and 2 degrees features of a heptadecapeptide from S-100b protein has enough structural information when dissolved in solvents of intermediate polarity provide appropriate conditions for long-lived fluorescence from a tyrosine/tyrosinate species to occur.  相似文献   

6.
L A Chung  J D Lear  W F DeGrado 《Biochemistry》1992,31(28):6608-6616
A 21-residue peptide of the sequence (LSSLLSL)3 forms ion channels when incorporated into planar lipid bilayer membranes of diphytanoylphosphatidylcholine (diPhy-PC). The frequency of channel openings increases with the applied voltage gradient. We investigated the molecular and structural mechanisms underlying this voltage dependence. A series of seven peptides, each containing a tryptophan substituted for a single residue in the middle heptad, was synthesized, purified, and incorporated into small, unilamellar, diPhy-PC vesicles. We measured circular dichroism, maximum fluorescence emission wave-lengths, and fluorescence quenching by both aqueous and lipid hydrocarbon-associated quenchers. Circular dichroism spectra and the observed sequence periodicity of all fluorescence and fluorescence quenching data are consistent with an alpha-helical peptide secondary structure. Energy transfer quenching measurements using N-terminally labeled (LSSLLSL)3 co-incorporated at lipid/peptide ratios greater than 100 into vesicles with one of the Trp-substituted peptides showed that the vesicle-associated peptide, in the absence of a voltage gradient across the bilayer, exists as an equilibrium mixture of monomers and dimers. Static fluorescence quenching measurements using different lipid-bound quenchers indicate that the helical axis of a representative lipid-associated peptide is, on average, oriented parallel to the surface of the membrane and located a few angstroms below the polar head group/hydrocarbon boundary. This surface orientation for the peptide is confirmed by the complementary sequence periodicity observed for Trp fluorescence emission wavelength shifts and collisional quenching by aqueous CsCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Demasking of peptide bonds during proteolysis of β-casein and β-lactoglobulin by trypsin was monitored by the measurement of the overall spectral shift of intrinsic protein fluorescence. A clear shift of the apparent emission maxima from approximately 340–345 nm to 355–360 nm during proteolysis was observed, with a time course, which follows protein degradation and structural opening. In contrast to procedures using extrinsic fluorescence labels, this label-free procedure does not bear the risk of structural alterations. It is easy to perform, fast, and has a relatively high accuracy of determination. Proteolysis was modelled as simple two-step process with consecutive demasking and hydrolysis stages. It was shown that the fluorescence shift can be attributed to the demasking stage. Formally, kinetics of the peptide bond demasking obeys a first-order kinetic law. Both the theoretical simulations and experiment are in accordance giving the similar dependences of the hydrolysis degree on the degree of peptide bond demasking.  相似文献   

8.
Dipeptides of the aromatic fluorescent amino acid, pyrenylalanine, are studied using both stationary and transient fluorescence techniques. Since the conformational transitions of the peptide chain are slow compared to the decay of the pyrene excited state, both ground state conformations, adopted by the peptide, i.e., C5 and C7, can be monitored separately. Kinetic models are proposed to describe the molecular dynamics of the peptide chain as probed by the intramolecular excimer formation between both pyrene chromophores. These kinetic schemes explain the influence of solvent, chain chirality, main chain–side chain interactions, and nature of the protecting groups on the emission spectrum and the fluorescence decay profile of these model peptides. These schemes also provide a tool to calculate rate constants of conformational transitions and excimer formation. By comparing the kinetic and thermodynamic parameters of the various compounds, the influence of a structural modification on the molecular dynamics of the peptide chain is determined.  相似文献   

9.
A novel cyclodextrin conjugated peptide, 1, having two different fluorophores, coumarin and pyrene, in the side chains has been designed and synthesized. The circular dichroism study reveals that 1 shows typical -helix pattern, and forms intramolecular inclusion complex with coumarin. The fluorescence emission study shows that the peptide exhibits intramolecular fluorescence resonance energy transfer (FRET) without quenching of two fluorophores. We have determined the binding constants of 1 for various biologically important steroid molecules as guests using the guest-responsive variation in the fluorescence emission intensity of coumarin.  相似文献   

10.
Absorption and fluorescence emission spectra of Rhodopseudomonas capsulata, strains 37b4 (wild type), A1a+ (blue-green mutant strain), Y5 (phototroph negative, having only B-800–850 bacteriochlorophyll-carotenoid-protein complex) at 4 K, 77 K and 300 K were measured. The fluorescence emission at 890 nm of the B-870 bacteriochlorophyll band dominates the emission of other spectral forms of the strains 37b4 and A1a+, while in strain Y5 a fluorescence emission band at 865 nm of the B-850 bacteriochlorophyll dominates. Very little fluorescence was observed at 805 nm. A linear relation between relative fluorescence intensity and the exciting light intensity was observed. The integrated fluorescence yield increased as the temperature was lowered from 300 K to 4 K. The results are discussed in the light of the arrangement of pigment molecules in the membrane and the process of energy migration within the photosynthetic apparatus.  相似文献   

11.
BACKGROUND: Particulate surfaces such as beads are routinely used as platforms for molecular assembly for fundamental and practical applications in flow cytometry. Molecular assembly is transduced as the direct analysis of fluorescence, or as a result of fluorescence resonance energy transfer. Binding of fluorescent ligands to beads sometimes alters their emission yield relative to the unbound ligands. Characterizing the physical basis of factors that regulate the fluorescence yield of bound fluorophores (on beads) is a necessary step toward their rational use as mediators of numerous fluorescence based applications. METHODS: We have examined the binding between two biotinylated and fluoresceinated beta-endorphin peptides and commercial streptavidin beads using flow cytometric analysis. We have analyzed the assembly between a specific monoclonal antibody and an endorphin peptide in solution using resonance energy transfer and compared the results on beads in flow cytometry using steady-state and time-resolved fluorescence. RESULTS: We have defined conditions for binding biotinylated and fluoresceinated endorphin peptides to beads. These measurements suggest that the peptide structure can influence both the intensity of fluorescence and the mode of peptide binding on the bead surface. We have defined conditions for binding antibody to the bead using biotinylated protein A. We compared and contrasted the interactions between the fluoresceinated endorphin peptide and the rhodamine- labeled antibody. In solution we measure a K(d) of <38 nM by resonance energy transfer and on beads 22 nM. DISCUSSION: Some issues important to the modular assembly of a fluorescence resonance energy transfer (FRET) based sensing scheme have been resolved. The affinity of peptides used herein is a function of their solubility in water, and the emission intensity of the bound species depends on the separation distance between the fluorescein and the biotin moiety. This is due to the quasi-specific quenching interaction between the fluorescein and a proximal binding pocket of streptavidin. Detection of antibodies in solution and on beads either by FRET or capture of fluorescent ligands by dark antibodies subsequently enables the determination of K(d) values, which indicate agreement between solution and flow cytometric determinations.  相似文献   

12.
When excited by ultraviolet radiation, leaves of a great number of species of higher plants exhibit emission of blue fluorescence, comparable in intensity to the red emission of chlorophyll. The fluorescence decay of the blue emission of spinach leaves recorded by single photon counting techniques is decomposed into exponential components and it is shown that at least three different components are present. The lifetime of the three components does not show significant variations with the excitation or emission wavelengths. The excitation and emission spectra of each component were determined. The nature of the chemical compounds which cause this emission is discussed in relation to these spectra.  相似文献   

13.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

14.
Proteins play a crucial role in the biomineralization of hard tissues such as eggshells. We report here the purification, characterization, and in vitro mineralization studies of a peptide, pelovaterin, extracted from eggshells of a soft-shelled turtle. It is a glycine-rich peptide with 42 amino acid residues and three disulfide bonds. When tested in vitro, the peptide induced the formation of a metastable vaterite phase. The floret-shaped morphology formed at a lower concentration ( approximately 1 microM) was transformed into spherical particles at higher concentrations (>500 microM). The solution properties of the peptide are investigated by circular dichroism (CD), fluorescence emission spectroscopy, and dynamic light scattering (DLS) experiments. The conformation of pelovaterin changed from an unordered state at a low concentration to a beta-sheet structure at high concentrations. Fluorescence emission studies indicated that the quantum yield is significantly decreased at higher concentrations, accompanied by a blue shift in the emission maximum. At higher concentrations a red-edge excitation shift was observed, indicating the restricted mobility of the peptide. On the basis of these observations, we discuss the presence of a peptide concentration-dependent monomer-multimer equilibrium in solution and its role in controlling the nucleation, growth, and morphology of CaCO(3) crystals. This is the first peptide known to induce the nucleation and stabilization of the vaterite phase in solution.  相似文献   

15.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The fluorescence of tryptophan residues of gramicidin A (gA), bound to phosphatidylcholine liposomes contains valuable information about local changes in the environment of the molecule induced by gamma radiation. With this work, we aim to demonstrate that the gamma radiation effect on the peptide involves the action of free radicals, derived from water radiolysis and the process of lipid peroxidation. Basically, the methodology consists of the analysis of UV and fluorescence emission spectra of the peptide liposome complexes under control conditions and upon gamma irradiation. Free radical production was impaired by the removal of molecular oxygen or the presence of ethanol in the liposome suspension. The intensity of the tryptophan fluorescence was recorded as a function of the gamma radiation dose in the range of 0-250 Gy and the data were fitted with a single decay exponential function containing an additional constant term (named residual fluorescence). The correlation between the decrease in tryptophan fluorescence emission (D(c) = 80 +/- 10 Gy) and increase in gamma radiation dose indicates the partial damage of the tryptophan side chains of gA. O(2) removal or ethanol addition partially reduced the decay of the tryptophan fluorescence emission involving an indirect action of gamma radiation via a water radiolysis mechanism. The residual fluorescence emission (A(0)) increases in O(2)-free buffer (98 +/- 13) and in 10% ethanol-containing buffer (74 +/- 34) compared to control conditions (23 +/- 5). Varying the dose rate between 1-10 Gy/min at a constant dose of 50 Gy, an inverse dose-rate effect was observed. Thus, our study provides evidence for the lipid peroxidation effect on the tryptophan fluorescence. In conclusion, this article sustains the hypothesis of the connection between the lipid peroxidation and structural changes of membrane proteins induced by gamma radiation. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
We demonstrate two-color fluorescence microscopy with nanoscale spatial resolution by applying stimulated emission depletion on fluorophores differing in their absorption and emission spectra. Green- and red-emitting fluorophores are selectively excited and quenched using dedicated beam pairs. The stimulated emission depletion beams deliver a lateral resolution of <30 nm and 65 nm for the green and the red color channel, respectively. The approximately 5 nm alignment accuracy of the two images establishes the precision with which differently labeled proteins are correlated in space. Colocalized nanoscopy is demonstrated with endosomal protein patterns and by resolving nanoclusters of a mitochondrial outer membrane protein, Tom20, in relation with the F(1)F(0)ATP synthase. The joint improvement of resolution and colocalization demonstrates the emerging potential of far-field fluorescence nanoscopy to study the spatial organization of macromolecules in cells.  相似文献   

18.
Spectral changes and a sixfold increase in the emission intensity were observed in the fluorescence of a single xanthene probe (Texas red) attached to beta2m-microglobulin (beta2m) upon assembly of beta2m into a ternary complex with mouse H-2Kd heavy chain and influenza nuclear protein peptide. Dissociation of the labeled beta2m from the ternary complex restored the probe's fluorescence and absorption spectra and reduced the emission intensity. Thus changes in xanthene probe fluorescence upon association/dissociation of the labeled beta2m molecule with/from the ternary complex provide a simple and convenient method for studying the assembly/dissociation mechanism of the class I major histocompatibility complex (MHC-I) encoded molecule. The photophysical changes in the probe can be accounted for by the oligomerization of free labeled beta2m molecules. The fluorescence at 610 nm is due to beta2m dimers, where the probes are significantly separated spatially so that their emission and excitation properties are close to those of xanthene monomers. Fluorescence around 630 nm is due to beta2m oligomers where xanthene probes interact. Minima in the steady-state excitation (550 nm) and emission (630 nm) anisotropy spectra correlate with the maxima of the high-order oligomer excitation and emission spectra, showing that their fluorescence is more depolarized. These photophysical features are explained by splitting of the first singlet excited state of interacting xanthene probes that can be modeled by exciton theory.  相似文献   

19.
Chlortetracycline complexes with di- and trivalent cations resulting in an enhancement of its fluorescence emission intensity. Rabbit peritoneal neutrophils loaded with chlortetracycline gave a fluorescence response, even in the absence of extracellular Ca2+ and Mg2+, by a decrease in fluorescence intensity. The shift in the fluorescence emission maximum to lower wavelengths after the response suggested the response to be due to Ca2+ and not Mg2+ flux. The response was elicited by three mechanisms--a receptor-mediated mechanism by the chemotactic peptide, an ionophore-mediated one by lasalocid, and a detergent-mediated response by digitonin. These observations indicated that the response was due to transport of calcium across membranes in the intracellular compartments and may be physiologically significant. Whereas extracellular Ca2+ did not significantly affect the chemotactic peptide and lasalocid-mediated responses, Ca2+ inhibited the digitonin-mediated responses in a dose-dependent manner possibly due to extracellular Ca2+ flooding the cytosol through the digitonin-permeabilized plasma membrane and equilibrating the Ca2+ gradient across the intracellular membranes. The data collectively indicate that the fluorescence response is due to release of Ca2+ across intracellular membranes from a Ca2+ storage site into the cytosol.  相似文献   

20.
The relationship between alpha-helical secondary structure and the fluorescence properties of an intrinsic tryptophan residue were investigated. A monomeric alpha-helix forming peptide and a dimeric coiled-coil forming peptide containing a central tryptophan residue were synthesized. The fluorescence parameters of the tryptophan residue were determined for these model systems at a range of fractional alpha-helical contents. The steady-state emission maximum was independent of the fractional alpha-helical content. A minimum of three exponential decay times was required to fully describe the time-resolved fluorescence data. Changes were observed in the decay times and more significantly, in their relative contributions that could be correlated with alpha-helix content. The results were also shown to be consistent with a model in which the decay times were independent of both alpha-helix content and emission wavelength. In this model the relative contributions of the decay time components were directly proportional to the alpha-helix content. Data were also analyzed according to a continuous distribution of exponential decay time model, employing global analysis techniques. The recovered distributions had "widths" that were both poorly defined and independent of peptide conformation. We propose that the three decay times are associated with the three ground-state chi 1 rotamers of the tryptophan residue and that the changes in the relative contributions of the decay times are the result of conformational constraints, imposed by the alpha-helical main-chain, on the chi 1 rotamer populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号