首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Otto L. Lange 《Oecologia》1980,45(1):82-87
Summary Net photosynthesis (10 klx light intensity, 150 E m-2 s-1 PAR) and dark respiration of the lichen Ramalina maciformis at different temperatures are measured in relation to thallus water content. Both first increase with increasing hydration. Dark respiration then remains constant with increased water content until thallus saturation. In contrast, a further increase in water content leads to a depression of net photosynthesis, as shown in previous studies, after a maximum of CO2 uptake has been attained. However, the extent of this depression depends strongly on temperature. In saturated thalli (160% water content in relation to lichen dry weight) the depression amounts to about 15% and 63% of the maximum unsaturated rate at 5°C and 25°C thallus temperature, respectively. The moisture compensation-point of net photosynthesis is also decisively determined by temperature (for 0°C at 20% water content; for 25°C at 15%), and the water content that allows maximum rates of CO2 uptake (for 0°C at 80%; for 25°C at less than 40% water content). An electrical analogue of CO2 exchange in a lichen thallus is presented, and it is suggested that the experimental results may be interpreted in terms of temperature-dependent CO2 diffusion resistances in imbibed lichen thalli.  相似文献   

2.
CO2 exchange rate in relation to thallus water content (WC, % of dry weight) was determined for 22 species of lichens, mainly members of the genera Pseudocyphellaria and Sticta, from a temperate rainforest, Urewere National Park, New Zealand. All data were obtained in the field, either using a standard technique in which the lichens were initially wetted (soaked or sprayed, then shaken) and allowed to slowly dry, or from periodic measurements on samples that were continuously exposed in their natural habitat. A wide range of WC was found, with species varying from 357 to 3360% for maximal WC in the field, and from 86 to 1300% for optimal WC for photosynthesis. Maximal WC for lichens, wetted by the standard technique, were almost always much less than the field maxima, due to the presence of water on the thalli. The relationships between CO2 exchange rate and WC could be divided into four response types based on the presence, and degree, of depression of photosynthesis at high WC. Type A lichens showed no depression, and Type B only a little at maximal WC. Type C had a very large depression and, at the highest WC, CO2 release could occur even in the light. Photosynthetic depression commenced soon after optimal WC was reached. Type D lichens showed a similar depression but the response curve had an inflection so that net photosynthesis was low but almost constant, and never negative, at higher WC. There was little apparent relationship between lichen genus or photobiont type and the response type. It was shown that high WC does limit photosynthetic CO2 uptake under natural conditions. Lichens, taken directly from the field and allowed to dry under controlled conditions, had net photosynthesis rates that were initially strongly inhibited but rose to an optimum, before declining at low WC. The limiting effects of high WC were clearly shown when, under similar light conditions, severe photosynthetic depression followed a brief, midday, rain storm. Over the whole measuring period the lichens were rarely at their optimal WC for photosynthesis, being mostly too wet or, occasionally, too dry. Photosynthetic performance by the lichens exposed in the field was similar to that expected from the relationship between the photosynthetic rate and WC established by the standard procedure.  相似文献   

3.
The total resistances to CO2 uptake by Sticta latifrons Rich, and Pseudocyphellaria amphisticta Kremp. were separated into transport and carboxylation components by calculation after transformation of net photosynthesis rate against CO2 concentration curves into a linear form. The use of this technique circumvented the problem of measuring the internal CO2 concentration of the lichen thalli. Both species exhibited an increase in transport resistance at high thallus water contents and an increase in both transport and carboxylation resistances at low water contents. At low and intermediate water contents internal transport resistances were larger than carboxylation resistances when measured at limiting CO2 concentrations. However, at ambient CO2 concentrations carboxylation processes were the dominant factors limiting photosynthesis at all, except the high, water contents.  相似文献   

4.
We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (Pet(CO(2))) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, Pet(CO(2)) increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as Pet(CO(2)) increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, Pet(CO(2)) levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.  相似文献   

5.
Regulation of transport of dissolved inorganic carbon (DIC)in response to CO2 concentration in the external medium hasbeen compared in two closely-related green algae, Chlorellaellipsoidea and Chlorella saccharophila. C. ellipsoidea, whengrown in high CO2, had reduced activities of both CO2 and transport and DIC transport activitieswere increased after the cells had acclimated to air. However,high CO2-grown C. saccharophila had a comparable level of photosyntheticaffinity for DIC to that of air-grown C. ellipsoidea and thiswas accompanied by a capacity to accumulate high internal concentrationsof DIC. The high photosynthetic affinity and the high intracellularDIC accumulation did not change in cells grown in air exceptthat the occurrence of external carbonic anhydrase (CA) in air-grownC. saccharophila stimulated the intracellular DIC accumulationin the absence of added CA. These data indicate that activeDIC transport is constitutively expressed in C. saccharophila,presumably because this alga is insensitive to the repressiveeffect of high CO2 on DIC transport. This strongly supportsthe existence of a direct sensing mechanism for external CO2in Chlorella species, but also indicates that external CA isregulated independently of DIC transport in Chlorella species. Key words: Carbonic anhydrase, Chlorella, CO2-insensitive, DIC transport, wild type  相似文献   

6.
CO2 exchange and water relations of selected lichen species were investigated in the field and also in the laboratory, at a height of 3106 m above sea level in the Austrian Alps, during the short snowless summer period from middle of July to the end of August. In the course of the field investigations, clear summer days were quite rare. Altogether 14 diurnal courses of CO2 exchange were measured spanning a time of 255 h of measurements.The air temperatures measured close to the ground ranged between −0.7 and 17.1 °C and their daily fluctuation was lower than 10.7 °C. Fog was present for more than one-third of the measuring period and relative humidity (RH) exceeded 90% in almost half of the time. Temperature optimum of net photosynthesis (NP) of Xanthoria elegans and Brodoa atrofusca determined in the laboratory increased with increasing photosynthetic photon flux density (PPFD) from 1.5 to 11.3 °C and the maximal CO2 uptake was found to be at 10 °C. In the field the lichens were metabolically active at air temperatures between −0.7 and 12.8 °C. The light compensation points (LCP) of both lichen species ranged in the laboratory between 50 and 200 μmol m−2 s−1 PPFD (0–20 °C) and in the field between 22 and 56 μmol m−2 s−1 PPFD (3–8 °C). At 30 °C the NP of X. elegans surpassed the LCP, whereas B. atrofusca remained below the LCP. NP in X. elegans did not reach light saturation at 1500 μmol m−2 s−1 PPFD. NP in B. atrofusca reached light saturation at low temperatures (−5 to +5 °C). At higher temperatures light saturation was almost detectable. On sunny days the lichens in the field were metabolically active only for 3 h during the early morning. In this time they reached the maximal values or values close to their maximal CO2 uptake in situ. Under dry weather conditions the lichens dried out to a minimal water content (WC) of 5–12% which is below the moisture compensation point (MCP) of 34–25%. The optimal WC was between 90% and 120% dry weight (DW) in B. atrofusca and Umbilicaria cylindrica, in X. elegans between 140% and 180% DW. Species specific differences in water-holding capacity, desiccation intensity and in the compensation points of temperature, light and moisture are responsible for differences in metabolic activity. The lichens were active during less than half of the observation time. Total time of NP of X. elegans was 24% of the measuring period, for U. cylindrica 22% and for B. atrofusca 16%.  相似文献   

7.
8.
9.
Meyer S  Genty B 《Planta》1999,210(1):126-131
The contribution of changes in stomatal conductance and metabolism in determining heterogeneous photosynthesis inhibition during dehydration and abscisic acid (ABA) feeding was investigated using detached leaves of Rosa rubiginosa L. The steady-state and maximal rates of electron transport under a transient high CO2 concentration were monitored using chlorophyll fluorescence imaging. The decrease in electron transport rate induced by dehydration and ABA treatment almost reverted to the control rate under transient high CO2 availability. Therefore, inhibition of photosynthesis was mainly mediated through stomatal closure. However, since reversion was not complete, a metabolic inhibition was also identified as a decrease in the maximal electron transport rate driven by carboxylation. Under dehydration or ABA feeding, as under low ambient CO2 treatment, in 21% or 0.4% O2, the lower the steady-state electron transport was, the lower was the maximal electron transport rate during transient high CO2 availability. We conclude that low CO2 availability reduced the capacity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) to drive electron transport. The potential contribution of Rubisco deactivation mediated by stomatal closure is discussed. Received: 1 February 1999 / Accepted: 15 June 1999  相似文献   

10.
The aim of this study was to examine the relationship between the content of various types of myosin heavy chain isoforms (MyHC) in the vastus lateralis muscle and pulmonary oxygen uptake during moderate power output incremental exercise, performed at low and at high pedalling rates. Twenty one male subjects (mean +/- SD) aged 24.1 +/- 2.8 years; body mass 72.9 +/- 7.2 kg; height 179.1 +/- 4.8 cm; BMI 22.69 +/- 1.89 kg.m(-2); VO2max 50.6 +/- 5.3 ml.kg.min(-1), participated in this study. On separate days, they performed two incremental exercise tests at 60 rev.min(-1) and at 120 rev.min(-1), until exhaustion. Gas exchange variables were measured continuously breath by breath. Blood samples were taken for measurements of plasma lactate concentration prior to the exercise test and at the end of each step of the incremental exercise. Muscle biopsies were taken from the vastus lateralis muscle, using Bergstr?m needle, and they were analysed for the content of MyHC I and MyHC II using SDS--PAGE and two groups (n=7, each) were selected: group H with the highest content of MyHC II (60.7 % +/- 10.5 %) and group L with the lowest content of MyHC II (27.6 % +/- 6.1 %). We have found that during incremental exercise at the power output between 30-120 W, performed at 60 rev.min(-1), oxygen uptake in the group H was significantly greater than in the group L (ANCOVA, p=0.003, upward shift of the intercept in VO2/power output relationship). During cycling at the same power output but at 120 rev.min(-1), the oxygen uptake was also higher in the group H, when compared to the group L (i.e. upward shift of the intercept in VO2/power output relationship, ANCOVA, p=0.002). Moreover, the increase in pedalling rate from 60 to 120 rev.min(-1) was accompanied by a significantly higher increase of oxygen cost of cycling and by a significantly higher plasma lactate concentration in subjects from group H. We concluded that the muscle mechanical efficiency, expressed by the VO2/PO ratio, during cycling in the range of power outputs 30-120 W, performed at 60 as well as 120 rev.min(-1), is significantly lower in the individuals with the highest content of MyHC II, when compared to the individuals with the lowest content of MyHC II in the vastus lateralis.  相似文献   

11.
R P Funke  J L Kovar    D P Weeks 《Plant physiology》1997,114(1):237-244
Genomic complementation of the high-CO2-requiring mutant ca-1-12-1C of Chlamydomonas reinhardtii was achieved by transformation with DNA pools from an indexed cosmid library of wild-type genomic DNA. Transformation of mutant cells with cosmid DNA from two microtiter plates in the library produced colonies that grew phototrophically at atmospheric CO2 levels. Transformations with cosmid DNA from each of the rows and files of the two plates pinpointed one well in each plate with a cosmid bearing the targeted gene. Sequencing of cosmid subclones revealed a gene encoding a recently identified C. reinhardtii chloroplast carbonic anhydrase (CAH3). Transformations with chimeric constructs combining different portions of the wild-type and mutant genes indicated the presence of a mutation in the 5'-half of the gene. Comparison of mutant and wild-type gene sequences in this region revealed a G-to-A substitution in the mutant gene, which produced a nonsense codon. The data presented demonstrate that the carbonic anhydrase produced from the CAH3 gene is essential to the inorganic carbon-concentrating mechanism in C. reinhardtii and that genomic complementation can be a facile and efficient means for isolating genes associated with defects affecting photosynthesis and other physiological processes in this eukaryotic green alga.  相似文献   

12.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

13.
14.
Huey and Slatkin’s (Q Rev Biol 51:363–384, 1976) cost–benefit model of lizard thermoregulation predicts variation in thermoregulatory strategies (from active thermoregulation to thermoconformity) with respect to the costs and benefits of the thermoregulatory behaviour and the thermal quality of the environment. Although this framework has been widely employed in correlative field studies, experimental tests aiming to evaluate the model are scarce. We conducted laboratory experiments to see whether the common lizard Zootoca vivipara, an active and effective thermoregulator in the field, can alter its thermoregulatory behaviour in response to differences in perceived predation risk and food supply in a constant thermal environment. Predation risk and food supply were represented by chemical cues of a sympatric snake predator and the lizards’ food in the laboratory, respectively. We also compared males and postpartum females, which have different preferred or “target” body temperatures. Both sexes thermoregulated actively in all treatments. We detected sex-specific differences in the way lizards adjusted their accuracy of thermoregulation to the treatments: males were less accurate in the predation treatment, while no such effects were detected in females. Neither sex reacted to the food treatment. With regard to the two main types of thermoregulatory behaviour (activity and microhabitat selection), the treatments had no significant effects. However, postpartum females were more active than males in all treatments. Our results further stress that increasing physiological performance by active thermoregulation has high priority in lizard behaviour, but also shows that lizards can indeed shift their accuracy of thermoregulation in response to costs with possible immediate negative fitness effects (i.e. predation-caused mortality).  相似文献   

15.
潮汐作用作为盐沼湿地独特的水文特征能在短时间内强烈影响盐沼湿地的碳平衡.利用涡度相关和微气象监测技术,对黄河三角洲盐沼湿地净生态系统CO2交换(NEE)和环境因子进行监测,并同步监测潮汐变化,探究潮汐过程及潮汐作用下干湿交替对NEE的影响.结果表明: 潮汐过程促进了白天生态系统CO2的吸收但未对夜晚CO2的释放产生显著影响,潮汐淹水成为影响白天NEE的主要因子.干旱阶段和湿润阶段NEE的日平均动态均呈“U”型曲线,但干旱阶段NEE的变幅较小.干湿交替增强了白天生态系统CO2的吸收,干旱阶段最大光合速率(Amax)、表观量子产量(α)和生态系统呼吸(Reco)的均值均高于湿润阶段.此外,干湿交替减少了盐沼湿地夜晚NEE释放的同时增强了其温度敏感性.  相似文献   

16.
17.
Carbonic anhydrase II (CA II), which has the highest turnover number and widest tissue distribution of any of the seven CA isozymes known in humans, is absent from the red blood cells and probably from other tissues of patients with CA II deficiency syndrome. We have sequenced the CA II gene in a patient from a consanguinous marriage in a Belgian family and identified the mutation that is probably the cause of the CA II deficiency in that family. The change is a C-to-T transition which results in the substitution of Tyr (TAT) for His (CAT) at position 107. This histidine is invariant in all amniotic CA isozymes sequenced to date, as well as the CAs from elasmobranch and algal sources and in a viral CA-related protein. His-107 appears to have a stabilizing function in the structure of all CA molecules, and its substitution by Tyr apparently disrupts the critical hydrogen bonding of His-107 to two other similarly invariant residues, Glu-117 and Tyr-194, resulting in an unstable CA II molecule. We have also completed the intron-exon structure of the normal human CA II gene, which has allowed us to prepare PCR primers for all exons. These primers will facilitate the determination of the mutations in other inherited CA II deficiencies.  相似文献   

18.
The quantum yield of non-cyclic electron transport from PS II (PS II) and the apparent quantum yield of CO2 fixation (CO2) were measured in the maize genotype, R-CH HOPI, which shows a high leaf anthocyanin content when grown at a temperature slightly below 20 °C. Thus, the leaf anthocyanin content was thirty-five times higher in plants grown at 18 °C when compared to plants grown at 23 °C. The relationship between PS II and CO2 obtained at different CO2 partial pressure was linear for plants with both high and low leaf anthocyanin content. The PS II/CO2 ratio was about 16 in plants with high leaf anthocyanin content and about 10 in plants with low leaf anthocyanin content. The leaf light absorptance in the 400–700 nm region was higher in plants with higher leaf anthocyanin content. Since leaf absorptance between 400 and 600 nm and leaf anthocyanin content also resulted in a strict linear relationship, an indirect estimation of the absorbed light by leaf anthocyanins and thus at chloroplasts was derived. Using the correct estimation of the absorbed light at chloroplasts, to obtain CO2, differences in PS II/CO2 ratios between plants with different leaf anthocyanin content were eliminated. The modulation of leaf anthocyanin content by growth temperature is regarded as an effective strategy to modulate the light available at the chloroplasts.  相似文献   

19.
The transepithelial resistance of confluent epithelial cell monolayers was monitored to investigate the influence of basic amino acids, Ca2+, protamine and protons on tight junction electrical resistance. In an accompanying paper we investigated the effect of these substances on the lamellar/hexagonal II phase transition in reconstituted phospholipid membranes containing phosphatidylserine and phosphatidylethanolamine. We conclude that the permeability of tight junctions may be described by a lipid phase equilibrium where the lamellar phase corresponds to an open state and the hexagonal lipid phase to the closed state of the cell contact. This dynamic lipid model is well suited to describe the morphological as well as functional properties of the tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号