首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract. Macrobrachium ohione is a migratory (amphidromous) river shrimp (Decapoda, Caridea) that may be parasitized by the branchial parasite Probopyrus pandalicola (Isopoda, Bopyridae). The parasite disrupts gonadal maturation and spawning in female shrimps, resulting in the total loss of reproduction. Shrimps are usually infected by bopyrid parasites during the late zoeal or early postlarval stages; in this study, we investigated the apparent parasite infection of adult shrimps. We analyzed the relationships between parasite body size (total length) and host shrimp body size (carapace length) to test the hypothesis that parasite infection of adult shrimps occurs during the shrimps' reproductive migrations. The results presented here indicate that infection of adult shrimps is common in M. ohione in the Atchafalaya and Mississippi Rivers, Louisiana, USA. In the two upriver sites sampled, Butte La Rose (BLR) and River Bend (RB), parasite size was not associated with host body size. In these locations, many parasitized adult M. ohione were infected with immature P. pandalicola (40.3% in BLR and 51.2% in RB), indicating that the shrimps were adults at the time of infection. A possible explanation is that when female shrimps enter the estuary to hatch larvae, they molt and spawn another brood. The smaller male shrimps that accompany the females downstream are also assumed to molt and continue growth. The intermediate host of the parasite is an estuarine copepod, and thus the parasite cryptoniscus larva that infects the host shrimp is primarily estuarine as well. Newly molted shrimps have soft cuticles, which may facilitate their infection by parasite cryptonisci. Our conclusion is that most infections of adult shrimps occur during their migration into estuarine waters, the primary habitat of infective parasite larvae, and that host vulnerability is probably increased following host ecdysis.  相似文献   

3.
Sphaeralcyon shackletonisp. nov. and Sphaeralcyon scottisp. nov. are described and illustrated from material collected at the Scotia Sea and Weddell Sea on the Polarstern cruises ANT XIX/3 (ANDEEP-I), ANT XIX/5 (LAMPOS), and ANT XXI/2 (BENDEX). With the discovery of Sphaeralcyon shackletoni and S. scotti, three species are now known in the genus Sphaeralcyon, all them reported from the Southern Ocean. The diagnosis of the genus has been slightly modified to accommodate some of the characters of the new species.  相似文献   

4.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

5.
A new species of sea anemone in the genus Hormathia, is described and illustrated based on forty-two specimens collected during the Polarstern cruises ANT XV/3 and ANT XVII/3 in the Weddell Sea. The main features of the new taxon are the crown of flattened and hooked tubercles at the distal end of the scapus, the regular arrangement of pointed tubercles along the column and the cnidom. The new species shares the pointed tubercles, at least in the upper part of the scapus, with two other species of Hormathia in the southern hemisphere: Hormathia spinosa Hertwig 1882 and H. pectinata Hertwig 1882 Received in revised form: 27 December 2000 Electronic Publication  相似文献   

6.
7.
Abstract

A platygastrid wasp that feeds on the snow tussock flower midge in the inflorescences of New Zealand snow tussock grasses (Chionochloa spp.) is formally described. Zelostemma chionochloae is a specialist natural enemy of Eucalyptodiplosis chionochloae Kolesik which is the most ubiquitous and sophisticated seed predator of Chionochloa. Z. chionochloae is a koinobiont parasitoid and some larvae enter prolonged diapause inside their host for at least 2 years. Methods for adult rearing are described. The phenology of Z. chionochloae is highly synchronised with its host even after 2 years in diapause. Parasitism levels were found to differ between years and elevations, while sex ratios differed among years. Z chionochloae probably suffers inter‐specific competition with another host‐specific hymenopteran parasitoid (Gastrancistrus sp.) which also parasitises E. chionochloae.  相似文献   

8.
The amount of cattle dung buried in the field by afrotropical dung beetles, mainlyDiastellopalpus quinquedens Bates, was not affected by previous subcutaneous injection of the cattle with 0.2 mg kg−1 ivermectin. The numbers ofD. quinquedens larvae developing in brood masses, however, were reduced; only 28% of the brood masses made of dung voided two days after treatment of the cattle contained live larvae. When the brood masses were made of dung excreted 8 and 16 days after treatment 90 and 94%, respectively, contained live larvae.  相似文献   

9.
10.
The invasive weed, parthenium (Parthenium hysterophorus L.) (Asteraceae: tribe Heliantheae), damages agriculture, adversely impacts biodiversity and is hazardous to human and animal health in Ethiopia. The host range of two natural enemies, a leaf-feeding beetle, Zygogramma bicolorata (Coleoptera: Chrysomelidae) and a stem-boring weevil, Listronotus setosipennis (Coleoptera: Curculionidae) was evaluated for biological control of the weed in Ethiopia. The specificity of Z. bicolorata and L. setosipennis was assessed against 29 and 31 non-target plant species, respectively. The host range of Z. bicolorata and L. setosipennis was first assessed using no-choice tests to examine their oviposition and feeding response on non-target plants. Although oviposition by Z. bicolorata occurred on six non-target species in four Asteraceae species in no-choice tests, it was significantly lower than on parthenium and no larvae developed. Zygogramma bicolorata nibbled the leaves of one of the five niger seed (Guizotia abyssinica L. – an oil seed crop closely related to parthenium) cultivars tested, but feeding and oviposition were significantly less than on parthenium. Furthermore, choice tests indicated that Z. bicolorata did not oviposit nor feed on G. abyssinica when parthenium was present. In no-choice tests, L. setosipennis did not oviposit on any of the non-target species assessed. Mean oviposition on parthenium was 39.0?±?3.4 eggs per plant whereas no eggs were laid on any of the 31 species tested. Based on these and other host range tests, permission was obtained to field release Z. bicolorata and L. setosipennis in Ethiopia.  相似文献   

11.
Although larvae of flea weevils (Curculioninae: Rhamphini) have been known to be leaf miners, larvae of the rhamphine weevil Orchestes hustachei have been found in aphid galls of four Tetraneura species on Ulmus davidiana and in galls of Paracolopha morissoni on Zelkova serrata. This study clarified the feeding habits of O. hustachei larvae and evaluated gall selection by ovipositing females to test the hypothesis of host race formation on their hosts, Tetraneura and Paracolopha galls. When weevil larvae were placed in half‐cut galls, they always fed on aphids rather than on gall tissue. When given gall tissue only, all larvae failed to reach adulthood. The number of aphids surviving in a parasitized gall decreased significantly with the development of the weevil larvae. These results suggest that O. hustachei larvae use aphids as their major food source. In the field, ovipositing females did not discern between four Tetraneura species on U. davidiana, in spite of a large difference in suitability as food. Paracolopha morrisoni was introduced into Hokkaido approximately 100 years ago, together with the host plant Z. serrata. It is probable that P. morrisoni has recently come to be used as a host by O. hustachei in Hokkaido. Host choice experiments using Tetraneura sp. O and P. morrisoni galls indicated that female weevils from Z. serrata preferred P. morrisoni to Tetraneura sp. O galls, while females from U. davidiana selected the two types of gall randomly. On Z. serrata, female weevils selected larger P. morrisoni galls, while on U. davidiana, females did not show a preference for gall size. These results suggest that a host shift to P. morrisoni galls may have led to an initial stage of host race formation between the weevil population using Tetraneura galls on U. davidiana, and that using P. morrisoni galls on Z. serrata.  相似文献   

12.
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca2+-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys56 relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca2+-induced ANT conformational change and mitochondrial swelling. ANT-Pro61 isomerization increased ANT-Cys56 relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca2+ induced ANT “c” conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca2+-induced ANT “c” conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca2+ induces the ANT “c” conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.  相似文献   

13.
Bruchid beetles of the genus Zabrotes (Coleoptera: Bruchidae) are important worldwide pests of legume seeds. Samples of Zabrotes subfasciatus and Z. sylvestris were collected from seeds of two Phaseolus species throughout Mexico to assess the role of host plant variation and plant domestication on the evolution of host use in this species. For this purpose six polymorphic microsatellite loci were isolated and characterized for the bruchid Z. subfasciatus. Cross‐species amplification tests were performed on Z. sylvestris and revealed that three loci amplified successfully and were polymorphic in this closely related species.  相似文献   

14.
The tropical fruit tree, Ziziphus mauritiana (Rhamnaceae), a native of the Indian subcontinent, is a pasture and environmental weed in northern Australia and Fiji. In their native range, Ziziphus spp., including commercially cultivated Z. mauritiana and Z. jujuba, are subjected to a wide range of pests and diseases. The feasibility of classical biological control of this weed has not been explored to date. Effective biological control could reduce plant vigour and seed output, thereby limiting the spread of Z. mauritiana in Australia. Two Ziziphus species are native to Australia, hence, any prospective biological control agent should be specific to Z. mauritiana. Opportunistic field surveys and literature searches identified 133 species of phytophagous insects, 9 species of phytophagous mites and 12 plant pathogens on Ziziphus spp. Host records suggest the following are possibly specific to Z. mauritiana and hence are prospective biological control agents in Australia: the seed‐feeding weevil Aubeus himalayanus; the leaf‐feeding gracillariid moth Phyllonorycter iochrysis; the leaf‐mining chrysomelid beetle Platypria erinaceus; the leaf‐folding crambid moth Synclera univocalis; the leaf‐galling midge Phyllodiplosis jujubae; and the gall‐mites Aceria cernuus and Larvacarus transitans. Host range of the rust Phakopsora zizyphi‐vulgaris includes many Ziziphus species, including the native Z. oenoplia and hence would not be a suitable biological control agent in Australia. The powdery mildew Pseudoidium ziziphi, with a host range restricted to Ziziphus species, has not been reported on Z. oenoplia. All available information on the pests and diseases of Z. mauritiana are from cultivated varieties. Hence, future surveys should focus on wild Z. mauritiana in the Indian subcontinent in areas that are climatically similar to the regions of northern Australia, where it is currently most abundant.  相似文献   

15.
The α-tubulin genes from two psychrophilic algae belonging to the genus Chloromonas (here named ANT1 and ANT3) have been isolated and sequenced. The genes ant1 and ant3 contain 4 and 2 introns, respectively. The coding DNA sequences are 90% identical but the degree of isology is very high at the polypeptide level (more than 97% strict identities). The ANT1 and ANT3 α-tubulin amino acid sequences were compared to the corresponding sequence of the mesophilic alga Chlamydomonas reinhardtii. Of the 15 substitutions detected in ANT1 and/or ANT3, 5 are common to both psychrophilic algae. The recorded substitutions have been analyzed in terms of cold adaptation on the basis of the available three-dimensional structure of the α,β-tubulin heterodimer from pig brain. Most of these are subtle changes, but two substitutions, M268V and A295V occurring in the region of interdimer contacts, could be of great significance for the cold stability of Antarctic algae microtubules due to the fact that the entropic control of microtubule assembly is particularly high in cold adaptes species. Received: December 24, 1998 / Accepted: April 2, 1999  相似文献   

16.
17.
18.
Zooxanthella nutricula is a photosynthetic dinoflagellate symbiont of polycystine radiolarians. As such, it is hypothesized to provide fixed organic carbon, including in the form of acylglycerolipids and sterols, to its non-photosynthetic host. We have previously characterized the sterols of Z. nutricula that may be transferred to its host and, in the present study, have turned our attention to three classes of fatty acid-containing lipids, chloroplast-associated galactolipids, betaine lipids, which are non-phosphorylated phospholipid analogs present in many eukaryotes, and triglycerides. Zooxanthella nutricula was observed using positive-ion electrospray/mass spectrometry (ESI/MS) and ESI/MS/MS to produce the galactolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) enriched in octadecapentaenoic (18:5(n-3)) and octadecatetraenoic (18:4(n-3)) acid to place it within a group of peridinin-containing dinoflagellates in a C18/C18 (sn-1/sn-2 fatty acid regiochemistry) cluster, as opposed to another cluster with C20/C18 MGDG and DGDG, where the C20 fatty acid is eicosapentaenoic acid (20:5(n-3)) and the C18 fatty acid is either 18:5(n-3) or 18:4(n-3). Zooxanthella nutricula was also observed to produce 38:10 (total number of fatty acid carbons:total number of double bonds), 38:6, and 44:7 diacylglycerylcarboxyhydroxymethylcholine (DGCC) as the sole type of betaine lipid. Although it is more difficult to determine which fatty acids are present in the sn-1 and sn-2 positions on the glycerol backbone of DGCC using ESI/MS/MS, gas chromatography/mass spectrometry (GC/MS)-based examination indicated the putatively DGCC-associated polyunsaturated fatty acid (PUFA) docosahexaenoic acid (22:6(n-3)). Coupled with the C18 PUFAs of MGDG and DGDG, and fatty acids associated with triglycerides (also examined via GC/MS), Z. nutricula could serve as a rich source of PUFAs for its radiolarian host. These data demonstrate that Z. nutricula produces a similar set of PUFA-containing lipids as Symbiodinium microadriaticum, a photosynthetic dinoflagellate symbiont of cnidarians, indicating a metabolic commonality in these phylogenetically discrete dinoflagellate symbionts with unrelated host organisms.  相似文献   

19.
20.
Sarsia medelae sp. nov. is described and illustrated from material collected in the Weddell Sea during the R/V Polarstern cruises ANT XVII/3 (April 2000) and in the Ross Sea during the R/V Italica cruise XIX (March 2004). The specimens have always been observed in association with several gorgonians of genera Thouarella sp., Primnoisis sp., and Notisis sp. The polyps of Sarsia medelae are considered as mesobiont of the gorgonian host with a non-parasitic relationship. It is the first time that this kind of association, which is so far only known from the Indian and Pacific Ocean, is reported in the Southern Ocean. This finding is discussed in the framework of the hypothesis that a part of Antarctic fauna has its origin in species dating back to before the Cretaceous period, because this kind of association between a hydroid and a gorgonian host being only known in the actual Antarctic shelf and in regions belonging to the previous Thethys areas.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号