首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that can transmit malaria. Recent attempts to predict the daily water temperature dynamics in mosquito breeding sites in Kenya have been successful. However, the developed model may be too complex, as the sophisticated equipment that was used for detailed meteorological observations is not widely distributed in Africa, making it difficult to predict the daily water temperature dynamics on a local scale. Therefore, we compared two energy budget models with earlier made observations of the daily water temperature dynamics in a small, shallow and clear water pool (diameter 0.96 m, depth 0.32 m) in Kenya. This paper describes (1) a complex 1-Dimensional model, and (2) a simplified second model, and (3) shows that both models mimic the water temperature dynamics in the water pool accurately. The latter model has the advantage that it only needs common weather data (air temperature, air humidity, wind speed and cloud cover) to estimate the diurnal temperature dynamics in breeding sites of African malaria mosquitoes.  相似文献   

2.
Eight pilot-scale in-line filtration trials were performed to evaluate the passage of cyanobacterial cells through drinking water filters after sudden increases in hydraulic loading rates. Trials were performed at 30 °C using two coagulant combinations (aluminum sulfate and cationic polymer or ferric chloride and cationic polymer), two initial filter loading rates (7 or 10 m/h) and two species of morphologically different cyanobacteria (Microcystis aeruginosa or Anabaena flos aquae). The filter was perturbed by instantaneously increasing the hydraulic loading rate by 50%. Filter influent and effluent water qualities were characterized by measuring turbidity, particles and chlorophyll a. The observed post-perturbation filter effluent chlorophyll a peaks were 1.6–48 times greater than the pre-perturbation averages. Chlorophyll a peaks were larger for M. aeruginosa than for A. flos aquae. Chlorophyll a peaks were also larger for the higher (10 m/h) than for the lower (7 m/h) initial filter loading rate. The post-perturbation effluent turbidity peaks were 1.4–7.2 times greater than the pre-perturbation averages. The post-perturbation effluent particle peaks were 6.5–25 times greater than the pre-perturbation averages. These results indicate that particles were a more sensitive indicator of cyanobacterial passage than turbidity.  相似文献   

3.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

4.
Transmission of avian malaria in the Hawaiian Islands varies across altitudinal gradients and is greatest at elevations below 1500 m where both temperature and moisture are favorable for the sole mosquito vector, Culex quinquefasciatus, and extrinsic sporogonic development of the parasite, Plasmodium relictum. Potential consequences of global warming on this system have been recognized for over a decade with concerns that increases in mean temperatures could lead to expansion of malaria into habitats where cool temperatures currently limit transmission to highly susceptible endemic forest birds. Recent declines in two endangered species on the island of Kaua'i, the ‘Akikiki (Oreomystis bairdi) and ‘Akeke'e (Loxops caeruleirostris), and retreat of more common native honeycreepers to the last remaining high elevation habitat on the Alaka'i Plateau suggest that predicted changes in disease transmission may be occurring. We compared prevalence of malarial infections in forest birds that were sampled at three locations on the Plateau during 1994–1997 and again during 2007–2013, and also evaluated changes in the occurrence of mosquito larvae in available aquatic habitats during the same time periods. Prevalence of infection increased significantly at the lower (1100 m, 10.3% to 28.2%), middle (1250 m, 8.4% to 12.2%), and upper ends of the Plateau (1350 m, 2.0% to 19.3%). A concurrent increase in detections of Culex larvae in aquatic habitats associated with stream margins indicates that populations of the vector are also increasing. These increases are at least in part due to local transmission because overall prevalence in Kaua'i ‘Elepaio (Chasiempis sclateri), a sedentary native species, has increased from 17.2% to 27.0%. Increasing mean air temperatures, declining precipitation, and changes in streamflow that have taken place over the past 20 years are creating environmental conditions throughout major portions of the Alaka'i Plateau that support increased transmission of avian malaria.  相似文献   

5.
Increased human population in the Western Kenya highlands has led to reclamation of natural swamps resulting in the creation of habitats suitable for the breeding of Anopheles gambiae, the major malaria vector in the region. Here we report on a study to restore the reclaimed swamp and reverse its suitability as a habitat for malaria vectors. Napier grass-shaded and non-shaded water channels in reclaimed sites in Western Kenya highlands were studied for the presence and density of mosquito larvae, mosquito species composition, and daily variation in water temperature. Shading was associated with 75.5% and 88.4% (P < 0.0001) reduction in anopheline larvae densities and 78.1% and 88% (P < 0.0001) reduction in Anopheles gambiae sensu lato (s.l.) densities in two sites, respectively. Shading was associated with a 5.7°C, 5.0°C, and 4.7°C, and 1.6°C, 3.9°C, and 2.8°C (for maximum, minimum, and average temperatures, respectively) reduction (P < 0.0001) in water temperatures in the two locations, respectively. An. gambiae s.l. was the dominant species, constituting 83.2% and 73.1%, and 44.5% and 42.3%, of anophelines in non-shaded and shaded channels, respectively, in the two sites, respectively. An. gambiae sensu stricto (s.s.) constituted the majority (97.4%) of An. gambiae s.l., while the rest (2.6%) comprised of Anopheles arabiensis. Minimum water temperature decreased with increasing grass height (P = 0.0039 and P = 0.0415 for Lunyerere and Emutete sites, respectively). The results demonstrate how simple environmental strategies can have a strong impact on vector densities.  相似文献   

6.
Temperature, food quantity and quality play important roles in insect growth and survival, influencing population dynamics as well as interactions with other community members. However, the interaction between temperature and diet and its ecological consequences have been poorly documented. Toxorhynchites are well‐known biocontrol agents for container‐inhabiting mosquito larvae. We found that Toxorhynchites haemorrhoidalis larvae (Diptera: Culicidae) inhabiting water‐filled rosettes of tank bromeliads catch and eat prey of both aquatic (mosquito larvae) and terrestrial origin (ants), using distinct predatory methods. They carried out frontal attacks on ants, but ambushed mosquito larvae. In choice tests, Thaemorrhoidalis favored terrestrial prey. Temperature had a significant effect on predator development and survival through its interaction with diet, but did not alter the preference for ants. T. haemorrhoidalis larvae emerged quickly when fed only mosquito larvae, whereas all individuals died before pupation when fed only ants. We conclude that behavioral factors (i.e., attraction to ants that disturb the surface of the water) overtake physiological factors (i.e., the adverse outcome of elevated temperature and an ant‐based diet) in determining a predator's response to temperature:diet interactions. Finally, because Thaemorrhoidalis larvae preferentially feed on terrestrial insects in tank bromeliads, mosquito larvae may indirectly benefit from predation release.  相似文献   

7.
Hydraulics play an essential role in successful fish passage through fishways, yet little is known about the response of fish species to specific hydraulic characteristics. This study aims to determine the response of fish presence to water velocity that results from the flow regulation in the Changzhou Fishway (CFW). Water velocity meters and fish traps were used in the study to monitor water velocities and the presence of fish species at flood control levels as well as at normal pool levels. Water velocities in the CFW have a varied significantly as result of flow regulation, whereby water velocities at flood control levels are significantly higher than at normal pool levels (P = 0.014). A total of 3558 fish representing 28 species collected in the CFW were divided into two groups by cluster analysis. This type of divergence in species is strongly associated with the two controlled water levels in the fishway, wherein pelagic species predominate at normal pool levels, and demersal species predominate at flood control levels. This study suggests that the variations in water velocities trigger the shifts in species compositions that in the use of CFW.  相似文献   

8.
Comprehensive field investigations have been conducted four times on Nam Co, central Tibet, from September 2005 to September 2008. Here, we present the preliminary results focusing on the bathymetric survey and water quality measurements. The isobathic map shows that Nam Co is a high-altitude, deep lake where a flat and large basin lies in the central part with a water depth of more than 90 m. Water depth data from the northwestern bank areas of Nam Co provide unquestionable evidence of rising water levels in the last 3 decades because of the formation of two small islands that were still peninsulas in the 1970s. Water quality measurements taken at 19 stations during three summer field campaigns (2006, 2007 and 2008) covering almost all of the lake areas showed that the temperature, pH, dissolved oxygen and electric conductivity of surface water are on average 11.43°C, 9.21, 8.90 mg l−1 and 1,851 μS cm−1, respectively. The surface water shows no obvious spatial variability among all the stations. Vertical fluctuations of profiles, however, display some differences in thermocline and related parameters, such as pH and dissolved oxygen. According to the vertical variations of water quality parameters, the water column in relatively deep lake areas of Nam Co could be divided into three layers with distinctly various features: the epilimnion is from the surface to about 18–20 m depth in which the parameters are homogeneous with higher temperature and abundant sunlight; the metalimnion ranged from 20–60 m where a thermocline develops; the deepest layer forms a cold and dark hypolimnion.  相似文献   

9.
Water stress is regarded as a global challenge to forests. Unlike other water‐limited areas, the water use strategies of rocky mountainous forests, which play an important ecohydrological role, have not received sufficient attention. To prove our hypothesis that species adopt different water use strategies to avoid competition of limited water resources, we used site abiotic monitoring, sap flow and stable isotope method to study the biophysiological responses and water use preferences of two commonly distributed forest species, Pinus tabuliformis (Pt) and Quercus variabilis (Qv). The results showed that Pt transpired higher than Qv. Pt was also prone to adopt isohydric water use strategy as it demonstrated sensitive stomatal control over water loss through transpiration. Qv developed cavitation which was reflected by the dropping Ec in response to high vapor pressure deficit, concentrated peak sap flux density (Js), and enlarged hysteresis loop. Considering the average soil depth of 52.8 cm on the site, a common strategy shared by both species was the ability to tap water from deep soil layers (below 40 cm) when soil water was limited, and this contributed to the whole growing season transpiration. The contribution of surface layer water to plant water use increased and became the main water source for transpiration after rainfall. Qv was more efficient at using water from surface layer than Pt due to the developed surface root system when soil water content was not stressed. Our study proves that different water‐using strategies of co‐occurring species may be conducive to avoid competition of limited water resources to guarantee their survival. Knowledge of water stress‐coping strategies of trees has implications for the understanding and prediction of vegetation composition in similar areas and can facilitate forest management criteria for plantations.  相似文献   

10.
Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25°C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water temperature reached 28.9° C. Water temperature was an important factor in trout distribution in the two pools. During 1–11 August 1994, water temperatures in pool 1 ranged from 21.5°C at the bottom (4.1 m) to 28.9° C at the surface. After 5 August, trout were no longer found in this pool, suggesting that trout had moved out of the high temperature water or died. In the adjacent, shallower (1.5m) pool 2, surface water temperatures were as high as 27.9° C, but temperatures on the bottom remained cooler (17.5–21° C) than pool 1, presumably due to groundwater seeps. Consistent aggregations of trout were observed in pool 2 throughout the study period. During the day when water temperature was highest, most trout were found in a region of the pool with the lowest water temperature (mean=18.3° C). Conversely, regions with the highest water temperatures had the fewest trout during the day. The seeps may have introduced water with low dissolved oxygen into pool 2, as the DO in many locations on the bottom ranged from <1 mg 1?1 to 5 mg 1?1 over 24 h, while the surface DO ranged from 4.1 to 10.0mg 1?1. Lowest DO occurred from 2400 to 0600 hours. During August, water temperature and DO were positively related. Thus, rainbow trout faced a trade-off between the relatively cool water temperature with low, possibly lethal levels of DO (e.g. 1.7 to 3.4 mg 1?1 in region 3), and lethally high water temperature but high DO. Seeps may serve as important thermal refugia for trout, and an increased understanding of their role as potential critical refugia in Southern California is necessary.  相似文献   

11.
Length–weight relationships (LWRs) for three small indigenous fish species from the lower Brahmaputra in Assam, India: Glyptothorax telchitta, Nangra assamensis, and Gudusia chapra were studied on a monthly basis from February 2015 to January 2016. Various fishing gear types were employed: cast nets (9′ ½”), gillnets (30 × 0.9 m, 0.5″; 60 × 3 m, 1.5″) and mosquito nets (20 × 6 m, 0.04″). No previous reference is available on LWR data for two of these species.  相似文献   

12.
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0–3 m), an intermediate stratum exhibiting a steep halocline (3–3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987–0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958–0.956 water activity) at 3–3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.  相似文献   

13.
Salicaceae plants are dioecious woody plants. Previous studies have shown that male individuals are more tolerant to water deficiency than females for male‐biased poplars. However, Salix paraplesia is a female‐biased species in nature. It is still unknown whether female willows are more tolerant to drought stress than males. To better understand the sexually different tolerance to water deficiency in willows, a greenhouse experiment combined with a field investigation was conducted, and physiological traits were tested in male and female S. paraplesia under a drought‐stressed condition (50% of soil water capacity). Our field investigation showed that S. paraplesia was a species with female‐biased sex ratio along altitude gradients (2,400 m, 2,600 m and 2,800 m) in their natural habitats. Our results showed that the height growth, biomass accumulation, total chlorophyll pigment content (TChl), and the net photosynthetic rate were higher in female willows than in males at the low and middle altitudes (2,400 m and 2,600 m) rather than at a high altitude (2,800 m) under well‐watered conditions. Under drought‐stressed conditions, the growth, biomass, and photosynthesis were greatly inhibited in both sexes, while females showed higher biomass and TChl content and suffered less negative effects than did males. Particularly, females that originated from a high altitude showed lower leaf relative electrolyte leakage, malondialdehyde content, and less disorder of chloroplast ultrastructures but a higher peroxidase activity (POD) than that of males. Therefore, S. paraplesia females exhibited a better drought tolerance and self‐protective ability than males from high altitude. There is a reason to speculate that the population structure of S. paraplesia at a high altitude would be likely to further female biases with the increased drought intensity in the alpine regions.  相似文献   

14.
Relatively little is known about the distribution of fish in deep water (>200 m) in the Beaufort Sea. Data collected by an Acoustic Doppler Current Profiler operated in the Chukchi and Beaufort seas in summer were examined for evidence of fish biomass detections between 18 and 400 m. The presence of fish in waters between 1 and 30 m was explored opportunistically with a non-scientific echo sounder. Evaluation of findings was enhanced by measurements of water column properties (temperature, salinity, fluorescence and transmissivity). Relatively small shoals of fish were detected on the Chukchi shelf and eastern Chukchi shelf break, and also on the Alaskan and Canadian Beaufort shelves in the upper 20 m (T = 2–5°C). Much larger shoals (putative polar cod) were detected within Atlantic Water along the Beaufort continental slope (250–350 m) and near the bottom of Barrow and Mackenzie canyons, where temperatures were above 0°C. A warm-water plume of Alaska Coastal Current water with high concentrations of phytoplankton, zooplankton, and fish was found extending along the shelf 300 km eastward of Barrow Canyon. In contrast to the warm surface and Atlantic Water layers, very few fish were found in colder, intermediate depth Pacific-origin water between them. The large biomass of fish in the Atlantic Water along the continental slope of the Chukchi and Beaufort seas represents previously undescribed polar cod habitat. It has important implications with regard to considerations of resource development in this area as well as understanding impacts of climate change.  相似文献   

15.
Aims: To determine the occurrence of the human pathogen, Vibrio vulnificus, in south Texas coastal waters. Methods and Results: Coastal waters were sampled monthly between August 2006 and July 2007. Water temperature, dissolved oxygen, pH, salinity, conductivity and turbidity were measured during each sampling event. Culture‐based techniques utilizing Vibrio vulnificus agar (VVA) and membrane‐Enterococcus indoxyl‐β‐d ‐glucoside agar (mEI) were used to assess the occurrence and levels of V. vulnificus and the faecal contamination indicator group, enterococci, respectively. Vibrio vulnificus isolates were confirmed using colony‐blot hybridization with the species‐specific VVAP probe. Vibrio vulnificus was isolated at all sites throughout the year even when the water temperature dropped to 9·71°C. Significant correlations were found between concentrations of V. vulnificus and the abiotic factors, water temperature (P = 0·002) and dissolved oxygen (P = 0·028), as well as between concentrations of V. vulnificus and enterococci (P < 0·001). Conclusions: This study demonstrated the year‐round presence of V. vulnificus in coastal waters of south Texas. Significance and Impact of the Study: These findings indicate that the potential for human exposure to the pathogen, V. vulnificus, exists throughout the year. It also suggests that routinely monitored data might be used to predict the occurrence of the pathogen.  相似文献   

16.
This study investigates the relationship between the density of internal macrobioeroders in living massive Porites and nutrient status. The study was conducted along turbidity and chlorophyll gradients towards river mouths on 12 reefs in four regions of the inshore Great Barrier Reef. Mean internal macrobioeroder densities doubled from 2 to 8 m depth, and at the 8 m sites, densities increased 4- to 7-fold towards the river mouths in all regions. Densities also increased 1.6-fold for each additional 1 NTU turbidity and 650-fold per 1 μg L−1 additional chlorophyll a. The study shows that the density of macrobioeroder boreholes in living massive Porites is a simple bioindicator measure for changing turbidity and chlorophyll concentrations on the Great Barrier Reef for sites from which direct water quality measurements are unavailable.  相似文献   

17.
18.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold‐water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold‐water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold‐water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.  相似文献   

19.
Incursion of water hyacinth, Eichhornia crassipes, has been a potential threat to Lake Tana and its ecosystem services. Its expansion is currently managed by abstraction (removing by hand); nonetheless, the disposal of mats and formation of pools are remaining problematic. This study aimed to assess the potential effects of water hyacinth and its management on water quality and human health. Biotic and abiotic data were collected on open water, water hyacinth covered and water hyacinth cleared out habitats. A total of 3673 invertebrates belonging to twenty-one families were collected from 45 sites. Culicidae was the most abundant family accounting (37.2%), followed by Unionoidae (19.4%) and Sphaeriidae (8.1%). Abundance of anopheline and culicine larvae were significantly higher in water hyacinth cleared out habitats (p?<?0.05). Water conductivity and total dissolved solids were significantly higher in habitats covered with water hyacinth (p?<?0.05). In conclusion, water hyacinth infestation had a negative impact on water quality and biotic communities. The physical abstraction of water hyacinth provided a very good habitat for the proliferation of mosquito larvae. Therefore, integrating water hyacinth management practices along with mosquito larvae control strategy could help to abate the potential risk of malaria outbreak in the region. In addition, developing watershed scale nutrient management systems could have a vital contribution for managing water hyacinth invasion in the study area.  相似文献   

20.
The efficacy of virulent strain Metarhizium anisopliae 892 obtained from Pyrausta nubilalis was evaluated against mosquito larvae. LC50 values of M. anisopliae 892 for Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti were compared. Metarhizium anisopliae 892 could cause approximately 50% mortality of C. quinquefasciatus 4 days post inoculation in the concentration of 3.48 × 103 conidia/ml. The production of cuticle degrading enzyme chymoelastase (Pr1) and trypsin like protease (Pr2) was compared in the presence of inducers. There were significant differences in the production of Pr1 and Pr2 after addition of inducers i.e. cuticles of the three mosquito. The cuticles of C. quinquefasciatus induced maximum Pr1 in the mycelia of M. anisopliae 892 than the rest of two mosquito cuticles during de-repression condition. The larvae of C. quinquefasciatus were more susceptible than the larvae of A. stephensi and A. aegypti against spores of M. anisopliae 892. The quantity of induction of Pr1 in the mycelia of M. anisopliae 892 was positively correlated with the mortality of mosquito larvae. Production of Pr1 and Pr2 was decreased when the inducers were de-proteinated cuticles. The Pr2 induction of M. anisopliae 892 did not correlate with the mortality of mosquito larvae. From the observations of the present study it can concluded that Pr1 is a responsible factor for the mortality of the mosquito larvae. This is the first report of Pr1 induction by mosquito cuticle and its role in mosquito mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号