首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

2.
Smooth muscle heavy meromyosin (HMM) is phosphorylated by the Ca2+-activated phospholipid-dependent protein kinase, i.e. protein kinase C, at three sites on each 20,000-dalton light chain. Phosphorylation of three sites also is observed with isolated 20,000-dalton light chain and HMM subfragment 1. The phosphorylation sites are serine 1, serine 2, and threonine 9. Threonine is phosphorylated most rapidly followed by either serine 1 or 2. Phosphorylation of the third site occurs only on prolonged incubation. Phosphorylation is a random process. HMM phosphorylated at two sites per light chain by protein kinase C can be dephosphorylated, as shown using two phosphatase preparations. Increasing levels of phosphorylation of HMM by protein kinase C causes a progressive inhibition of the subsequent rate of phosphorylation of serine 19 by myosin light chain kinase and causes a progressive inhibition of actin-activated ATPase activity of HMM, prephosphorylated by myosin light chain kinase. Inhibition of ATPase activity is due to a decreased affinity of HMM for actin rather than a change in Vmax. Previous results with HMM and protein kinase C (Nishikawa, M., Sellers, J. R., Adelstein, R. S., and Hidaka, H. (1984) J. Biol. Chem. 259, 8808-8814) examined effects induced by phosphorylation of the threonine residues. Our results confirm these and consider also the influence of higher levels of phosphorylation by protein kinase C.  相似文献   

3.
Ca2+-activated, phospholipid-dependent protein kinase recently found in mammalian tissues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J.Biol.Chem.254, 3692–3695) is able to phosphorylate five fractions of calf thymus histone. H1 histone serves as a preferential substrate, and approximately two moles of phosphate are incorporated into every mole of this histone. Analysis on the N-bromosuccinimide-bisected fragments of this radioactive histone has revealed that the enzyme phosphorylates preferentially seryl and threonyl residues located in the carboxyl-terminal half of this histone molecule.  相似文献   

4.
Calponin, an actin-binding protein, inhibited the acto-heavy meromyosin (HMM) MgATPase and lowered the binding of HMM to actin. The amount of calponin bound to actin or tropomyosin-actin was the same when the ATPase was inhibited 80-90%. While the KATPase was diminished only less than 2-fold in the presence of calponin, the Vmax was decreased 6-fold and 2-fold with actin and tropomyosin-actin, respectively. A comparison of the kinetic constants for the ATP hydrolysis obtained in the presence of actin-calponin and tropomyosin-actin-calponin revealed that the tropomyosin augmented the Vmax 5-fold from the inhibited level, but there was no effect on the KATPase.  相似文献   

5.
Protein kinase C incorporates phosphate into two sites of myosin light chain kinase (MLC-kinase) in the absence of calmodulin. Phosphorylation is all but abolished in the presence of Ca2+ and calmodulin, suggesting that both sites of phosphorylation are close to the calmodulin binding site. The phosphorylation of MLC-kinase results in an approximately 10-fold increase in the dissociation constant of MLC-kinase for calmodulin. Following phosphorylation (2 mol/mol of enzyme) of MLC-kinase by protein kinase C, an additional 2 mol of phosphate can be incorporated into the MLC-kinase apoenzyme by the cAMP-dependent protein kinase. Different maps of phosphopeptides were obtained by tryptic hydrolysis from MLC-kinase preparations phosphorylated by each kinase. The phosphorylation sites for the cAMP-dependent kinase were located in a fragment of approximately 25,000 daltons. In contrast the phosphorylation sites for protein kinase C are found in a much smaller tryptic peptide. These results suggest that the phosphorylation sites on MLC-kinase are different for protein kinase C and for cAMP-dependent protein kinase. However, phosphorylation in both regions results in a reduced affinity for calmodulin.  相似文献   

6.
Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) is able to catalyze the phosphorylation of phospholamban in a canine cardiac sarcoplasmic reticulum preparation. This phosphorylation is associated with a 2-fold stimulation of Ca2+ uptake by cardiac sarcoplasmic reticulum similar to that seen following phosphorylation of phospholamban by an endogenous calmodulin-dependent protein kinase or by the catalytic subunit of cAMP-dependent protein kinase. Two-dimensional peptide maps of the tryptic fragments of phospholamban indicate that the three protein kinases differ in their selectivity for sites of phosphorylation. However, one common peptide appears to be phosphorylated by all three protein kinases. These findings suggest that protein kinase C may play a role similar to those played by cAMP- and calmodulin-dependent protein kinases in the regulation of Ca2+ uptake by cardiac sarcoplasmic reticulum, and raise the possibility that the effects of all three protein kinases are mediated through phosphorylation of a common peptide in phospholamban.  相似文献   

7.
Phosphorylation of clupeine sulfate by purified rat brain calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was studied. In the absence of Ca2+, phosphatidylserine and diolein markedly stimulated its phosphorylation. However Ca2+ did not stimulate but inhibit this phosphorylation about 30% in the presence of phospholipids. Random polymer (Arg, Ser) 3:1 and (Lys, Ser) 3:1 could be phosphorylated by protein kinase C. In the presence of phospholipids Ca2+ is not needed for the phosphorylation of polymer (Arg, Ser) 3:1, while Ca2+ is necessary for polymer (Lys, Ser) 3:1. Non-requirement of Ca2+ on clupeine phosphorylation by protein kinase C is briefly discussed.  相似文献   

8.
The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C1 phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C2 phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca2+ /phosphatidylserine/diolein than by Ca2+ alone or Cal2+ /calmodulin (group C1) or was completely dependent upon Ca2+ /phosphatdylserine/diolein (group C2); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca2+; (d) NaCl, which inhibited cAMP- and Ca2+/calmodulindependent phosphorylation, slightly increased phosphorylation of group C1 and slightly decreased phosphorylation of group C2 phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20–30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C2 phosphoproteins were considerably more sensitive. The IC50 for inhibition of P96 labeling was 19 μM. but for P83 was 190 μM. Group B phosphoproteins were also slightly inhibited, and the IC50 for P63 was 290 μM. No inhibitory effects of another dihydropyridine, nifedipine, or of verapamil were detected in this concentration range. BAY K 8644 did not displace [3H]phorbol-12,13-dibutyrate binding, nor was the inhibition decreased by increasing phosphatidylserine concentrations. BAY K 8644 had no effect on the rate of dephosphorylation of any phosphoprotein, indicating that it is unlikely to inhibit a protein phosphatase. BAY K 8644 may, therefore, prove to be a valuable tool for discriminating protein kinase C activity from the activity of other protein kinases. We conclude that BAY K 8644 interacts either with a specific subgroup of protein kinase C substrata or with one of two putative forms of protein kinase C.  相似文献   

9.
A Ca2+-dependent protease I), which hydrolyzes casein at Ca2+ concentrations lower than the 10(-5) M range, is purified roughly 4000-fold from the soluble fraction of rat brain. This protease is able to activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) by limited proteolysis analogously to the previously known Ca2+-dependent analogously to the previously known Ca2+-dependent protease (Ca2+ protease II) which is active at the millimolar range of Ca2+ (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616). The protein kinase fragment thus produced shows a molecular weight of about 5.1 X 10(4), and is significantly smaller than native protein kinase C (Mr = 7.7 X 10(4). Although protein kinase C may be normally activated in a reversible manner by the simultaneous presence of phospholipid and diacylglycerol at Ca2+ concentrations less than 10(-6) M, this enzyme fragment is fully active without any lipid fractions and independent of Ca2+. The limited proteolysis of protein kinase C is markedly enhanced in the velocity by the addition of phospholipid and diacylglycerol, which are both required for the reversible activation of the enzyme. However, casein hydrolysis by this protease is not affected by phospholipid and diacylglycerol. Available evidence suggests that, at lower concentrations of this divalent cation, Ca2+ protease I reacts preferentially with the active form of protein kinase C which is associated with membrane, and converts it to the permanently active form. In contrast, the inactive form of protein kinase C, which is free of membrane phospholipid, does not appear to be very susceptible to the proteolytic attack. It remains unknown, however, whether this mechanism of irreversible activation of protein kinase C does operate in physiological processes. It is noted that Ca2+ protease II, which is active at higher concentrations of Ca2+, proteolytically activates protein kinase C irrespective of the presence and absence of phospholipid and diacylglycerol.  相似文献   

10.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

11.
12.
A synthetic peptide ArgThrProProProSerGly with sequence similar to the threonine sites of phosphorylation in both myelin basic protein and simian virus 40 T antigen could be phosphorylated in vitro by a purified rat brain Ca2+-activated and phospholipid-dependent protein kinase, protein kinase C. The apparent Km and Vm values of this heptapeptide for the enzyme were determined to be 240 microM and 60 nmol/min/mg, respectively. Up to 0.8 mol 32P could be incorporated into the peptide, mainly at the threonine residue. Substitution of the L-threonine residue in the heptapeptide by its D-enantiomer abolished the phosphorylatability of the peptide by protein kinase C. However, this (D)Thr-containing peptide could act as a competitive inhibitor for the kinase with an apparent Ki value of approximately 320 microM. These findings suggest that a triprolyl sequence may act as a recognition site for protein kinase C.  相似文献   

13.
Caldesmon inhibition of actin-tropomyosin activation of myosin MgATPase activity was investigated. greater than 90% inhibition of ATPase activation correlated with 0.035-0.1 caldesmon bound per actin monomer over a wide range of conditions. Caldesmon inhibited sheep aorta actin-tropomyosin activation of skeletal muscle heavy meromyosin (HMM) by 85%, but had no effect on the binding affinity of HMM.ADP.Pi to actin. At ratios of 2 and 0.12 subfragment 1 (S1):1 actin, addition of caldesmon inhibited the ATPase activation by up to 95%, but did not alter the fraction of S1.ADP.Pi associated with actin-tropomyosin. We concluded that caldesmon inhibited actomyosin ATPase by slowing the rate-limiting step of the activation pathway. At concentrations comparable to the ATPase measurements, S1 displaced caldesmon from native thin filaments both in the absence (rigor) and the presence of MgATP. We therefore concluded that caldesmon could displace S1.ADP.Pi from actin-tropomyosin only under exceptional circumstances. An expressed mutant of caldesmon comprising just the C-terminal 99 amino acids bound actin 10 times weaker than whole caldesmon but otherwise inhibited actin-tropomyosin activation with the same potency and same mechanism as intact caldesmon. Thus, the entire inhibitory function of caldesmon resides in its extreme C terminus.  相似文献   

14.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

15.
Ca,phospholipid-dependent (PKC) andcAMP-dependent (PKA) protein kinases phosphorylate the -subunit of the Na,K-ATPase from duck salt gland with the incorporation of 0.3 and 0.5 mol32P/mol of -subunit, respectively. PKA (in contrast to PKC) phosphorylates the -subunit only in the presence of detergents. Limited tryptic digestion of the Na,K-ATPase phosphorylated by PKC demonstrates that32P is incorporated into the N-terminal 41-kDa fragment of the -subunit. Selective chymotrypsin cleavage of phosphorylated enzyme yields a 35-kDa radioactive fragment derived from the central region of the -subunit molecule. These findings suggest that PKC phosphorylates the -subunit of the Na,K-ATPase within the region restricted by C3 and T1 cleavage sites.  相似文献   

16.
Caldesmon was purified to homogeneity from both chicken gizzard and bovine aortic smooth muscles. Caldesmon purified from bovine aorta was slightly larger than caldesmon purified from chicken gizzards (Mr = 140,000) when the two were compared electrophoretically. Caldesmon bound tightly to actin saturating at a molar ratio of 1 caldesmon monomer per 6.6 actin monomers. Ca2+-calmodulin appeared to reduce the affinity of caldesmon for actin. Caldesmon was also a potent inhibitor of heavy actomeromyosin ATPase activity producing a maximal effect at a ratio of 1 caldesmon monomer per 7-10 actin monomers. This effect was also antagonized by Ca2+-calmodulin. While caldesmon inhibited heavy actomeromyosin ATPase activity, it greatly enhanced binding of both unphosphorylated and phosphorylated heavy meromyosin to actin in the presence of MgATP, reducing the Kd for binding by a factor of 40 for each form of heavy meromyosin. Although we did identify a Ca2+-calmodulin-stimulated "caldesmon kinase" activity in caldesmon preparations purified under nondenaturing conditions, we observed no effect of phosphorylation (2 mol of PO4/mol of caldesmon) on the capacity to inhibit heavy actomeromyosin ATPase activity. Our results suggest that caldesmon could serve some role in smooth muscle function by enhancing cross-bridge affinity while inhibiting actomyosin ATPase activity.  相似文献   

17.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

18.
The calcium-activated, phospholipid-dependent protein kinase (C kinase) and its proteolytic product (M kinase), originally discovered in central nervous tissue (Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7603-7610) were characterized in bovine adrenal cortex cytosol. An endogenous calcium-dependent protease able to generate M kinase from the isolated C kinase in vitro was also present in adrenocortical extracts. Bovine adrenocortical cells in suspension as well as in primary culture contain the C and the M kinase activities. Treatment of these cells by steroidogenic concentrations (nM to microM) of ACTH resulted in a time and dose-dependent increase of cytosolic C kinase activity, whereas no change in M kinase activity was detected. This apparent activation appears to result mostly from an intracellular shift of the membrane-associated C kinase to a soluble cytosolic form of the enzyme. These observations open the question of the possible implication of the calcium, phospholipid-dependent protein phosphorylation system in hormone-dependent cellular regulatory processes.  相似文献   

19.
K Pinter  S B Marston 《FEBS letters》1992,305(3):192-196
Caldesmon was phosphorylated up to 1.2 molPi/mol using a partially purified endogenous kinase fraction. The phosphorylation site was within the C-terminal 99 amino acids. We were also able to phosphorylate caldesmon incorporated into native and synthetic smooth muscle thin filaments. Phosphorylation did not alter caldesmon binding to actin or inhibition of actomyosin ATPase. It also did not change Ca2+ sensitivity in native thin filaments. Phosphorylated caldesmon bound to myosin less than unphosphorylated caldesmon, especially when the myosin was also not phosphorylated. This work did not support the hypothesis that caldesmon function is modulated by phosphorylation.  相似文献   

20.
H Onishi  K Fujiwara 《Biochemistry》1990,29(12):3013-3023
When chicken gizzard heavy meromyosin (HMM) in its rigor complex with actin was reacted with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), HMM cross-linked with actin but also the two heads of the HMM molecule cross-linked to each other [Onishi, H., Maita, T., Matsuda, G., & Fujiwara, K. (1989) Biochemistry 28, 1898-1904, 1905-1912]. By ultracentrifugal fractionation of the EDC-treated acto-HMM in the presence of Mg-ATP, we obtained a preparation enriched for gizzard HMM with cross-linked heads. When HMM molecules in this preparation were rotary-shadowed and observed in an electron microscope, many head pairs were in contact with each other. The amount of HMM with cross-linked heads determined by electron microscopy was equal to that of the cross-linked NH2-terminal 24K tryptic fragments of HMM heavy chains determined by NaDodSO4 gel electrophoresis, indicating that this cross-linking is primarily responsible for the contact observed between two HMM heads. Most pairs of the contacted heads originated in the same HMM molecule, although a few pairs belonged to different HMM molecules. Cross-linking between the two heads of the same HMM molecule appeared to occur within the distal, more globular half of each head. However, the cross-linking sites were located at different positions within the globular portion. The actin-activated Mg-ATPase activity of the HMM sample treated with EDC in the presence of actin increased in a biphasic manner, depending on the concentration of F-actin, with two apparent association constants: 2.9 x 10(4) M-1 and one much less than 1 x 10(4) M-1. Since the apparent association constant obtained with the HMM control was similar to the latter value, the association constant for HMM molecules with cross-linked heads was identified to be the former value. The binding of HMM to actin was thus strengthened at least by a factor of 3 by the cross-linking between two HMM heads. These results suggest that HMM heads are trapped by treatment with EDC in the rigor complex configuration and that this configuration is retained even after the HMM has been released from actin. The EDC reactivity of rabbit skeletal muscle HMM, however, was different from that of chicken gizzard HMM. The treatment of acto-HMM complexes with EDC did not generate cross-linking between two skeletal muscle HMM heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号