首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The galactosylsphingosine psychosine (Psy) is one of the sphingolipids and induce the formation of multinuclear cells in several cell lines by inhibiting cytokinesis. In the present report, we show that intracellular organelles, including wheat germ agglutinin (WGA)-positive vesicles and early endosomes, are selectively dispersed by Psy. WGA is a conventional Golgi marker and WGA-positive vesicles appeared to co-localize with the Golgi apparatus in untreated cells. Psy treatment induced the dispersal of WGA-positive vesicles without affecting the structure of the Golgi apparatus, resulting in discrimination of WGA-positive vesicles from the Golgi apparatus. In sharp contrast to this effect of Psy, WGA-positive vesicles were not affected by brefeldin A treatment, which induced the disappearance of the Golgi apparatus. Immunostaining with anti-TGN46 antibodies revealed that a large portion of the WGA-positive vesicles were derived from the trans-Golgi network. Notably, the dispersed WGA-positive vesicles did not stain with anti-syntaxin 6, another marker of the trans-Golgi network. During cytokinesis, WGA-positive vesicles in the cytoplasm decreased, and WGA staining accumulated at the cleavage furrow, which was apparently inhibited by the presence of Psy. These data suggest that the transport of WGA-positive vesicles to the cleavage furrow is associated with the progression of cytokinesis.  相似文献   

2.
ISP-1 is a new type of immunosuppressant, the structure of which is homologous to that of sphingosine. In a previous study, ISP-1 was found to inhibit mammalian serine palmitoyltransferase, the primary enzyme involved in sphingolipid biosynthesis, and to reduce the intracellular pool of sphingolipids. ISP-1 induces the apoptosis of cytotoxic T cells, which is triggered by decreases in the intracellular levels of sphingolipids. In this study, the inhibition of yeast (Saccharomyces cerevisiae) proliferation by ISP-1 was observed. This ISP-1-induced growth inhibition was also triggered by decreases in the intracellular levels of sphingolipids. In addition, DNA duplication without cytokinesis was detected in ISP-1-treated yeast cells on flow cytometry analysis. We have cloned multicopy suppressor genes of yeast which overcome the lethal sphingolipid depletion induced by ISP-1. One of these genes, SLI2, is synonymous with YPK1, which encodes a serine/threonine kinase. Kinase-dead mutants of YPK1 did not show any resistance to ISP-1, leading us to predict that the kinase activity of the Ypk1 protein should be essential for this resistance to ISP-1. Ypk1 protein overexpression had no effect on sphingolipid biosynthesis by the yeast. Furthermore, both the phosphorylation and intracellular localization of the Ypk1 protein were regulated by the intracellular sphingolipid levels. These data suggest that the Ypk1 protein is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. The Ypk1 protein was reported to be a functional homologue of the mammalian protein kinase SGK, which is a downstream kinase of 3-phosphoinositide-dependent kinase 1 (PDK1). PDK1 phosphotidylinositol (PI) is regulated by PI-3,4,5-triphosphate and PI-3,4-bisphosphate through the pleckstrin homology (PH) domain. Overexpression of mammalian SGK also overcomes the sphingolipid depletion in yeast. Taking both the inability to produce PI-3,4, 5-triphosphate and PI-3,4-bisphosphate and the lack of a PH domain in the yeast homologue of PDK1, the Pkh1 protein, into account, these findings further suggest that yeast may use sphingolipids instead of inositol phospholipids as lipid mediators.  相似文献   

3.
Sphingolipids are major components of the plasma membrane of eukaryotic cells and were once thought of merely as structural components of the membrane. We have investigated effects of inhibiting sphingolipid biosynthesis, both in germinating spores and growing hyphae of Aspergillus nidulans. In germinating spores, genetic or pharmacological inactivation of inositol phosphorylceramide (IPC) synthase arrests the cell cycle in G(1) and also prevents polarized growth during spore germination. However, inactivation of IPC synthase not only eliminates sphingolipid biosynthesis but also leads to a marked accumulation of ceramide, its upstream intermediate. We therefore inactivated serine palmitoyltransferase, the first enzyme in the sphingolipid biosynthesis pathway, to determine effects of inhibiting sphingolipid biosynthesis without an accumulation of ceramide. This inactivation also prevented polarized growth but did not affect nuclear division of germinating spores. To see if sphingolipid biosynthesis is required to maintain polarized growth, and not just to establish polarity, we inhibited sphingolipid biosynthesis in cells in which polarity was already established. This inhibition rapidly abolished normal cell polarity and promoted cell tip branching, which normally never occurs. Cell tip branching was closely associated with dramatic changes in the normally highly polarized actin cytoskeleton and found to be dependent on actin function. The results indicate that sphingolipids are essential for the establishment and maintenance of cell polarity via control of the actin cytoskeleton and that accumulation of ceramide is likely responsible for arresting the cell cycle in G(1).  相似文献   

4.
Sphingolipid biosynthesis is potently upregulated by factors associated with cellular stress, including numerous chemotherapeutics, inflammatory cytokines, and glucocorticoids. Dihydroceramide desaturase 1 (Des1), the third enzyme in the highly conserved pathway driving sphingolipid biosynthesis, introduces the 4,5-trans-double bond that typifies most higher-order sphingolipids. Surprisingly, recent studies have shown that certain chemotherapeutics and other drugs inhibit Des1, giving rise to a number of sphingolipids that lack the characteristic double bond. In order to assess the effect of an altered sphingolipid profile (via Des1 inhibition) on cell function, we generated isogenic mouse embryonic fibroblasts lacking both Des1 alleles. Lipidomic profiling revealed that these cells contained higher levels of dihydroceramide than wild-type fibroblasts and that complex sphingolipids were comprised predominantly of the saturated backbone (e.g. sphinganine vs. sphingosine, dihydrosphingomyelin vs. sphingomyelin, etc.). Des1 ablation activated pro-survival and anabolic signaling intermediates (e.g. Akt/PKB, mTOR, MAPK, etc.) and provided protection from apoptosis caused by etoposide, a chemotherapeutic that induces sphingolipid synthesis by upregulating several sphingolipid biosynthesizing enzymes. These data reveal that the double bond present in most sphingolipids has a profound impact on cell survival pathways, and that the manipulation of Des1 could have important effects on apoptosis.  相似文献   

5.
Depletion of sphingolipids facilitates endosome to Golgi transport of ricin   总被引:1,自引:0,他引:1  
It has been previously demonstrated that depletion of cholesterol inhibits endosome to Golgi transport. Whether this inhibition is due to disruption of sphingolipid- and cholesterol-containing lipid rafts that are selected for Golgi transport or whether there is a physical requirement of cholesterol for either membrane deformations, facilitating formation of transport vesicles, or for recruitment of cytosolic constituents is not obvious. To investigate this in more detail, we have studied endosome to Golgi transport of ricin in sphingolipid-deficient cells using either a mutant cell line that does not express serine palmitoyltransferase, the first enzyme in sphingolipid biosynthesis, or a specific inhibitor, myriocin, of the same enzyme. Depletion of sphingolipids gave an increased sensitivity to ricin, and this increased sensitivity was inhibited by addition of sphingolipids. Importantly, endosome to Golgi transport of ricin, measured as sulfation of a modified ricin molecule, was increased in sphingolipid-deficient cells. No effect was seen on other pathways taken by ricin. Interestingly, cholesterol depletion inhibited endosome to Golgi transport even in cells with reduced levels of sphingolipids, suggesting that cholesterol as such is required for formation of transport vesicles. Our results indicate that the presence of sphingolipids actually limits and may function to control endosome to Golgi transport of ricin.  相似文献   

6.
Sphingolipids such as ceramides (Cers) play important roles in cell proliferation, apoptosis, and cell cycle regulation. An increased Cer level is linked to the cytotoxic effects of several chemotherapeutics. Various selective cyclooxygenase-2 (COX-2) inhibitors induce anti-proliferative effects in tumor cells. We addressed the possible interaction of the selective COX-2 inhibitors, coxibs, with the sphingolipid pathway as an explanation of their anti-proliferative effects. Sphingolipids were measured using liquid chromatography tandem mass spectrometry. Treatment of various cancer cell lines with celecoxib significantly increased sphinganine, C(16:0)-, C(24:0)-, C(24:1)-dihydroceramide (dhCer) and led to a depletion of C(24:0)-, C(24:1)-Cer in a time- and concentration-dependent manner, whereas other coxibs had no effect. Using (13)C,(15)N-labeled l-serine, we demonstrated that the augmented dhCers after celecoxib treatment originate from de novo synthesis. Celecoxib inhibited the dihydroceramide desaturase (DEGS) in vivo with an IC(50) of 78.9 +/- 1.5 muM and increased total Cer level about 2-fold, indicating an activation of sphingolipid biosynthesis. Interestingly, inhibition of the sphingolipid biosynthesis by specific inhibitors of l-serine palmitoyltransferase diminished the anti-proliferative potency of celecoxib. In conclusion, induction of de novo synthesis of sphingolipids and inhibition of DEGS contribute to the anti-proliferative effects of celecoxib.  相似文献   

7.
Sphingolipids and their metabolites are known to modulate various cellular events including proliferation, differentiation, and apoptosis. Serine palmitoyltransferase (SPT) is the enzyme that catalyzes the first step of the biosynthesis of all sphingolipids. Here, we report that a newly identified antibiotic, sulfamisterin, derived from the fungus Pycnidiella sp., is a specific inhibitor of SPT. The chemical structure of sulfamisterin resembles both that of sphingosine as well as a potent inhibitor of SPT, ISP-1 (myriocin). Sulfamisterin inhibited SPT activity with IC(50) = 3 nM in a cell-free lysate prepared from Chinese hamster ovary (CHO) fibroblasts. Sulfamisterin markedly inhibited the biosynthesis of sphingolipids in living CHO cells and in yeast Saccharomyces cerevisiae as monitored by radioactive precursors. Unlike the cell-free experiments, 10 microM sulfamisterin was required for complete inhibition of sphingolipid biosynthesis in intact cells. We also synthesized a series of structural analogues of sulfamisterin and examined their activities both in cell-free and in living cell systems.  相似文献   

8.
Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS.  相似文献   

9.
Sphingolipid metabolites have become recognized for their participation in cell functions and signaling events that control a wide array of cellular activities. Two main sphingolipids, ceramide and sphingosine-1-phosphate, are involved in signaling pathways that regulate cell proliferation, apoptosis, motility, differentiation, angiogenesis, stress responses, protein synthesis, carbohydrate metabolism, and intracellular trafficking. Ceramide and S1P often exert opposing effects on cell survival, ceramide being pro-apoptotic and S1P generally promoting cell survival. Therefore, the conversion of one of these metabolites to the other by sphingolipid enzymes provides a vast network of regulation and provides a useful therapeutic target. Here we provide a survey of the current knowledge of the roles of sphingolipid metabolites in cancer and in lipid storage disease. We review our attempts to interfere with this network of regulation and so provide new treatments for a range of diseases. We synthesized novel analogs of sphingolipids which inhibit the hydrolysis of ceramide or its conversion to more complex sphingolipids. These analogs caused elevation of ceramide levels, leading to apoptosis of a variety of cancer cells. Administration of a synthetic analog to tumor-bearing mice resulted in reduction and even disappearance of the tumors. Therapies for sphingolipid storage diseases, such as Niemann-Pick and Gaucher diseases were achieved by two different strategies: inhibition of the biosynthesis of the substrate (substrate reduction therapy) and protection of the mutated enzyme (chaperone therapy). Sphingolipid metabolism was monitored by the use of novel fluorescent sphingolipid analogs. The results described in this review indicate that our synthetic analogs could be developed both as anticancer drugs and for the treatment of sphingolipid storage diseases.  相似文献   

10.
Inhibition of cytokinesis by a lipid metabolite, psychosine   总被引:1,自引:0,他引:1  
Although a number of cellular components of cytokinesis have been identified, little is known about the detailed mechanisms underlying this process. Here, we report that the lipid metabolite psychosine (galactosylsphingosine), derived from galactosylceramide, induced formation of multinuclear cells from a variety of nonadherent and adherent cells due to inhibition of cytokinesis. When psychosine was added to the human myelomonocyte cell line U937, which was the most sensitive among the cell lines tested, cleavage furrow formed either incompletely or almost completely. However, abnormal contractile movement was detected in which the cellular contents of one of the hemispheres of the contracting cell were transferred into its counterpart. Finally, the cleavage furrow disappeared and cytokinesis was reversed. Psychosine treatment also induced giant clots of actin filaments in the cells that probably consisted of small vacuoles with filamentous structures, suggesting that psychosine affected actin reorganization. These observations could account for the formation of multinuclear globoid cells in the brains of patients with globoid cell leukodystrophy, a neurological disorder characterized by the accumulation of psychosine due to galactosylceramidase deficiency.  相似文献   

11.
Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol–sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol–sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.  相似文献   

12.
The ORM1 (Saccharomyces cerevisiae)-like proteins (ORMDLs) and their yeast orthologs, the Orms, are negative homeostatic regulators of the initiating enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT). Genome-wide association studies have established a strong correlation between elevated expression of the endoplasmic reticulum protein ORMDL3 and risk for childhood asthma. Here we test the notion that elevated levels of ORMDL3 decrease sphingolipid biosynthesis. This was tested in cultured human bronchial epithelial cells (HBECs) (an immortalized, but untransformed, airway epithelial cell line) and in HeLa cells (a cervical adenocarcinoma cell line). Surprisingly, elevated ORMDL3 expression did not suppress de novo biosynthesis of sphingolipids. We determined that ORMDL is expressed in functional excess relative to SPT at normal levels of expression. ORMDLs and SPT form stable complexes that are not increased by elevated ORMDL3 expression. Although sphingolipid biosynthesis was not decreased by elevated ORMDL3 expression, the steady state mass levels of all major sphingolipids were marginally decreased by low level ORMDL3 over-expression in HBECs. These data indicate that the contribution of ORMDL3 to asthma risk may involve changes in sphingolipid metabolism, but that the connection is complex.  相似文献   

13.
The mammalian ORMDL proteins are orthologues of the yeast Orm proteins (Orm1/2), which are regulators of ceramide biosynthesis. In mammalian cells, ceramide is a proapoptotic signaling sphingolipid, but it is also an obligate precursor to essential higher order sphingolipids. Therefore levels of ceramide are expected to be tightly controlled. We tested the three ORMDL isoforms for their role in homeostatically regulating ceramide biosynthesis in mammalian cells. Treatment of cells with a short chain (C6) ceramide or sphingosine resulted in a dramatic inhibition of ceramide biosynthesis. This inhibition was almost completely eliminated by ORMDL knockdown. This establishes that the ORMDL proteins mediate the feedback regulation of ceramide biosynthesis in mammalian cells. The ORMDL proteins are functionally redundant. Knockdown of all three isoforms simultaneously was required to alleviate the sphingolipid-mediated inhibition of ceramide biosynthesis. The lipid sensed by the ORMDL-mediated feedback mechanism is medium or long chain ceramide or a higher order sphingolipid. Treatment of permeabilized cells with C6-ceramide resulted in ORMDL-mediated inhibition of the rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase. This indicates that C6-ceramide inhibition requires only membrane-bound elements and does not involve diffusible proteins or small molecules. We also tested the atypical sphingomyelin synthase isoform, SMSr, for its role in the regulation of ceramide biosynthesis. This unusual enzyme has been reported to regulate ceramide levels in the endoplasmic reticulum. We were unable to detect a role for SMSr in regulating ceramide biosynthesis. We suggest that the role of SMSr may be in the regulation of downstream metabolism of ceramide.  相似文献   

14.
Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains. We reveal here that inhibition of the synthesis of sphingolipids with very long acyl chains induces defective cell plates with persistent vesicular structures and large gaps. Golgi-derived vesicles carrying material toward the cell plate display longer vesicle–vesicle contact time and their cargos accumulate at the cell plate, suggesting membrane fusion and/or recycling defects. In vitro fusion experiments between artificial vesicles show that glycosphingolipids with very long acyl chains stimulate lipid bilayer fusion. Therefore we propose that the very long acyl chains of sphingolipids are essential structural determinants for vesicle dynamics and membrane fusion during cytokinesis.  相似文献   

15.
Hereditary sensory neuropathy type I (HSN1) is a common degenerative disorder of peripheral sensory neurons. HSN1 is caused by mutations in the gene, encoding the long chain base 1 of serine palmitoyltransferase (SPT) [Nat. Genet. 27 (2001) 309]. Here, we show a 44% reduction of SPT activity in transformed lymphocytes from HSN1 patients with mutation T399G in the SPTLC1 gene. However, the decrease in SPT activity had no effect on de novo sphingolipid biosynthesis, cellular sphingolipid content, cell proliferation and death (apoptosis and necrosis). The removal of extracellular sphingolipids did not affect viability of HSN1 cells. We also found no significant difference in whole blood counts, viability, and permeability to Triton X-100 of primary lymphocytes from HSN1 patients. These results suggest that, despite the inhibition of mutant allele, the activity of nonmutant allele of STP may be sufficient for adequate sphingolipid biosynthesis and cell viability. Therefore, the neurodegeneration in HSN1 is likely to be caused by subtler and rather long-term effect(s) of these mutations such as loss of a cell-type selective facet of sphingolipid metabolism and/or function, or perhaps accumulation of toxic species, including abnormal protein(s) as in other neurodegenerations.  相似文献   

16.
Numerous studies have demonstrated the participation of sphingolipids in signal transduction and regulation of cell growth. Several cellular stress agents have been shown to elevate ceramide, the basic precursor of all sphingolipids, initiating a cascade of events leading to arrest of the cell cycle, apoptosis and cell death. Aiming at inhibiting metabolic pathways of sphingolipid metabolism that might lead to an increase of cellular ceramide, we have synthesized non-natural analogs of ceramide, sphingosine and trimethylsphingosine. When the respective analogs were applied to HL60 human myeloid leukemic cells they inhibited the biosynthesis of sphingomyelin (SPM) and glycosphingolipids and induced apoptosis that led to cell death. A fluorescent procedure which has been developed for quantifying the biosynthesis of cellular ceramide indicated an increase in the ceramide content following an incubation with the synthetic analogs. These results suggest that the newly synthesized sphingolipid analogs might be valuable for potential application as a therapeutic modality in leukemia and other malignancies.  相似文献   

17.
18.
The sphingolipids biosynthesis pathway generates bioactive molecules crucial to the regulation of physiological processes. We have recently reported that DAG (diacylglycerol) generated during sphingomyelin synthesis, plays an important role in PKC (protein kinase C) activation, necessary for the transit through the cell cycle (G1 to S transition) and cell proliferation (Cerbon and Lopez-Sanchez, 2003. Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem. J. 373, 917-924). Since pathogenic Entamoeba invadens synthesize the sphingolipids inositol-phosphate ceramide (IPC) and ethanolamine-phosphate ceramide (EPC) as well as sphingomyelin (SM), we decided to investigate when during growth initiation, the synthesis of sphingolipids takes place, DAG is generated and PKC is activated. We found that during the first 6 h of incubation there was a significant increase in the synthesis of all three sphingolipids, accompanied by a progressive increment (up to 4-fold) in the level of DAG, and particulate PKC activity was increased 4-8 times. The enhanced DAG levels coincided with decrements in the levels of sphingoid bases, conditions adequate for the activation of PKC. Moreover, we found that inhibition of sphingolipid synthesis with myriocin, specific inhibitor of the synthesis of sphinganine, reduce DAG generation, PKC activation and cell proliferation. All these inhibitory processes were restored by metabolic complementation with exogenous d-erythrosphingosine, indicating that the DAG generated during sphingolipid synthesis was necessary for PKC activation and cell proliferation. Also, we show that PI (phosphatidylinositol), PE (phosphatidylethanolamine) and PC (phosphatidylcholine) are the precursors of their respective sphingolipids (IPC, EPC and SM), and therefore sources of DAG to activate PKC.  相似文献   

19.
Regulation of ceramide biosynthesis by TOR complex 2   总被引:4,自引:0,他引:4  
Ceramides and sphingoid long-chain bases (LCBs) are precursors to more complex sphingolipids and play distinct signaling roles crucial for cell growth and survival. Conserved reactions within the sphingolipid biosynthetic pathway are responsible for the formation of these intermediates. Components of target of rapamycin complex 2 (TORC2) have been implicated in the biosynthesis of sphingolipids in S. cerevisiae; however, the precise step regulated by this complex remains unknown. Here we demonstrate that yeast cells deficient in TORC2 activity are impaired for de novo ceramide biosynthesis both in vivo and in vitro. We find that TORC2 regulates this step in part by activating the AGC kinase Ypk2 and that this step is antagonized by the Ca2+/calmodulin-dependent phosphatase calcineurin. Because Ypk2 is activated independently by LCBs, the direct precursors to ceramides, our data suggest a model wherein TORC2 signaling is coupled with LCB levels to control Ypk2 activity and, ultimately, regulate ceramide formation.  相似文献   

20.
Sphingolipids are present in membranes of all eukaryotic cells. Bioactive sphingolipids also function as signaling molecules that regulate cellular processes such as proliferation, migration, and apoptosis. Human cytomegalovirus (HCMV) exploits a variety of cellular signaling pathways to promote its own replication. However, whether HCMV modulates lipid signaling pathways is an essentially unexplored area of research in virus-host cell interactions. In this study, we examined the accumulation of the bioactive sphingolipids and the enzymes responsible for the biosynthesis and degradation of these lipids. HCMV infection results in increased accumulation and activity of sphingosine kinase (SphK), the enzyme that generates sphingosine 1-phosphate (S1P) and dihydrosphingosine 1-phosphate (dhS1P). We also utilized a mass spectrometry approach to generate a sphingolipidomic profile of HCMV-infected cells. We show that HCMV infection results in increased levels of dhS1P and ceramide at 24 h, suggesting an enhancement of de novo sphingolipid synthesis. Subsequently dihydrosphingosine and dhS1P decrease at 48 h consistent with attenuation of de novo sphingolipid synthesis. Finally, we present evidence that de novo sphingolipid synthesis and sphingosine kinase activity directly impact virus gene expression and virus growth. Together, these findings demonstrate that host cell sphingolipids are dynamically regulated upon infection with a herpes virus in a manner that impacts virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号