首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

2.
To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg –1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.  相似文献   

3.
A preliminary investigation on 20 Aglianico del Vulture commercial wines from the Basilicata region proved the existence of a significant variability in total antioxidant capacity which can exert a potential impact on wine quality. Nineteen Saccharomyces cerevisiae strains were tested in Aglianico del Vulture on pilot scale fermentation and the experimental wines obtained were evaluated for the antioxidant capacity, ethanol and total polyphenols. At the ninth day of fermentation the experimental wines had an antioxidant capacity, measured by photochemiluminescence, between 2.88 and 6.25 mM of ascorbic acid equivalent, ethanol concentration, measured by GC, between 5.49% and 10.99% and total polyphenols, determined by Folin Ciocalteau reagent, from 1153 to 1867 mg catechins/l. After 12 days the total antioxidant capacity was increased in most wines but decreased in some wines. These results, statistically analysed by principal component analysis, revealed a significant influence of S. cerevisiae strain on total antioxidant capacity and total polyphenols content of wine.  相似文献   

4.
5.
The principal agent in winemaking is the yeast Saccharomyces cerevisiae, which is characterized by a significant strain biodiversity. Here we report the characterization of 80 wild S. cerevisiae strains, isolated from grapes of different varieties in southern Italy, for genetic and technological variability. By PCR amplification with M13 primer a significant polymorphism was recorded and 12 different biotypes were identified among the strains. The specific strain-pattern could be used to follow the dynamics of different biotypes during the fermentation process. The analysis of experimental wines obtained by inoculated fermentations with the 80 strains showed significant differences among the wines. The level of each compound was a function of the strain performing the fermentative process. The main variables for the strain differentiation were the production of acetaldehyde and acetic acid, which ranged from 53 to 282 mg/l and from 0.20 to 1.88 g/l, respectively. Selected strains were tested in fermentation with two different grape musts, yielding experimental wines differing in the levels of secondary compounds and polyphenol content, in function of the interaction “grape must composition/yeast strain”. This finding has an applicative value for the potentiality of utilizing the resource of strain variability as a tool to individuate suitable starter cultures, which are able to complement and optimize grape quality.  相似文献   

6.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

7.
To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.  相似文献   

8.
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.  相似文献   

9.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

10.
Liu Z  Sun Z 《Biotechnology letters》2004,26(24):1861-1865
A d -lactonohydrolase gene of about 1.1 kb was cloned from Fusarium moniliforme. The ORF sequence predicted a protein of 382 amino acids with a molecular mass of about 40 kDa. An expression plasmid carrying the gene under the control of the triose phosphate isomerase gene promotor was introduced into Saccharomyces cerevisiae, and the d -lactonohydrolase gene was successfully expressed in the recombinant strains.Revisions requested 10 September 2004; Revisions received 15 October 2004The nucleotide sequence data reported in this paper has been assigned accession number AY728018 in the GeneBank database.  相似文献   

11.
A new body of evidence challenges the original consolidated theory of Pasteur on the natural (vineyard) origin of wine strains of Saccharomyces cerevisiae and instead indicates a local, winery-restricted life cycle. The findings open novel biotechnological perspectives for obtaining autochthonous selected starters for the wine industry. A local, individual, and specific fermenting yeast flora, mass selected year after year through many generations of S. cerevisiae in grape must, is present on the surfaces of every winery. These yeast strains are endowed with exceptional enological properties and capable of producing an assortment of volatile compounds apparently contributing to the specific bouquet of locally produced wines.  相似文献   

12.
A system for genotyping Saccharomyces cerevisiae is described based on a multiplex of ten microsatellite loci and the MAT locus. A database of genotypes has been developed for 246 yeast strains, including a large set of commercial wine yeasts, as well as 35 sequenced natural isolates currently being sequenced. The latter allow us, for the first time, to make direct comparisons of the relationship between DNA sequence data and microsatellite-based genotypes. The genotyping system provides a rapid and valuable system for strain identification as well as studying population genetics of S. cerevisiae.  相似文献   

13.
A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20–30°C), agitation rate (100–300 rpm), initial pH (5.0–7.0), inoculum concentration (5–15%), and glucose concentration (30–70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (25–2), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (22) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20°C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.  相似文献   

14.
The effect of glucose and dissolved oxygen in a synthetic medium simulating the standard composition of grape juice on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiae strain during alcoholic fermentation was studied. The specific in vitro activity of alcohol acetyltransferase (AATase, EC 2.3.1.84) and esterases (ESase, EC 3.1.1.1; hydrolysis and synthesis of esters) in cell-free extracts was also examined. The specific activity of AATase for ethyl acetate was found to peak at the beginning of the exponential growth phase and that for isoamyl acetate at its end. While the glucose concentration only affected the maximum specific activity of AATase, and only slightly, oxygen inhibited such activity, to a greater extent for isoamyl acetate than for ethyl acetate. On the other hand, esterases were found to catalyse the synthesis of ethyl acetate only at a low or medium glucose concentration (50 or 100 g l-1, respectively), and to reach their maximum hydrolytic activity on isoamyl acetate during the stationary growth phase. The highest ethyl acetate and isoamyl acetate concentrations in the medium were obtained with a glucose concentration of 250 g l-1 and semianaerobic conditions.  相似文献   

15.
16.
Genome shuffling can improve complex phenotypes; however, there are several obstacles towards its broader applicability due to increased complexity of eukaryotic cells. Here, we describe novel, efficient and reliable methods for genome shuffling to increase ethanol production of Saccharomyces cerevisiae. Using yeast sexual and asexual reproduction by itself, mutant diploid cells were shuffled through highly efficient sporulation and adequate cross among the haploid cells, followed by selection on the special plates. The selected strain obtained after three round genome shuffling not only distinctly improved the resistance to ethanol, but also, increased ethanol yield by up to 13% compared with the control.  相似文献   

17.
Novel additives that act as substratum for attachment of the yeast cells, increased ethanol production in Saccharomyces cerevisiae. The addition of 2 g rice husk, straw, wood shavings, plastic pieces or silica gel to 100 ml medium enhanced ethanol production by 30–40 (v/v). Six distillery strains showed an average enhancement of 34 from 4.1 (v/v) in control to 5.5 (v/v) on addition of rice husk. The cell wall bound glycogen increased by 40–50 mg g –1 dry yeast while intracellular glycogen decreased by 10–12 mg g–1 dry yeast in cells grown in presence of substratum  相似文献   

18.
Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.  相似文献   

19.
Saccharomyces cerevisiae grows very poorly in dilute acid lignocellulosic hydrolyzate during the anaerobic fermentation for fuel ethanol production. However, yeast cells grown aerobically on the hydrolyzate have increased tolerance for the hydrolyzate. Cultivation of yeast on part of the hydrolyzate has therefore the potential of enabling increased ethanol productivity in the fermentation of the hydrolyzate. To evaluate the ability of the yeast to grow in the hydrolyzate, fed-batch cultivations were run using the ethanol concentration as input variable to control the feed-rate. The yeast then grew in an undetoxified hydrolyzate with a specific growth rate of 0.19 h−1 by controlling the ethanol concentration at a low level during the cultivation. However, the biomass yield was lower for the cultivation on hydrolyzate compared to synthetic media: with an ethanol set-point of 0.25 g/l the yield was 0.46 g/g on the hydrolyzate, compared to 0.52 g/g for synthetic media. The main reason for the difference was not the ethanol production per se, but a significant production of glycerol at a high specific growth rate. The glycerol production may be attributed to an insufficient respiratory capacity.  相似文献   

20.
In this study 80 wine strains of Saccharomyces cerevisiae were characterized for the production of acetic acid. A significant variability in the production levels was determined among the strains, which produced from a few mg/l to more than 1 g/l. Fifteen strains, differing in acetic acid production, were tested in fermentation of grape musts of different varieties (Aglianico Basilicata, Aglianico Apulia, Cannonau, Bombino nero, Nero d'Avola, Vermentino, Fiano). The results emphasized a great strain variability, but the best strain behaviour was strictly related to the must composition, which is a determinant factor on the expression of the best strain potentiality. Therefore, this study, confirming the high/low production of acetic acid as a strain characteristic, demonstrated also that the inoculated fermentation becomes more advantageous when the starter culture is chosen in relation to the interaction of yeast strain/vine variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号