首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-sensitive mutants of simian rotavirus SA11 were previously developed and organized into 10 of a possible 11 recombination groups on the basis of genome reassortment studies. Two of these mutants, tsF and tsG, map to genes encoding VP2 (segment 2) and VP6 (segment 6), respectively. To gain insight into the role of these proteins in genome replication, MA104 cells were infected with tsF or tsG and then maintained at permissive temperature (31 degrees C) until 9 h postinfection, when some cells were shifted to nonpermissive temperature (39 degrees C). Subviral particles (SVPs) were recovered from the infected cells at 10.5 and 12 h postinfection and assayed for associated replicase activity in a cell-free system shown previously to support rotavirus genome replication in vitro. The results showed that the level of replicase activity associated with tsF SVPs from cells shifted to nonpermissive temperature was ca. 20-fold less than that associated with tsF SVPs from cells maintained at permissive temperature. In contrast, the level of replicase activity associated with tsG SVPs from cells maintained at nonpermissive temperature was only slightly less (twofold or less) than that associated with tsG SVPs from cells maintained at permissive temperature. Analysis of the structure of replicase particles from tsG-infected cells shifted to nonpermissive temperature showed that they were similar in size and density to virion-derived core particles and contained the major core protein VP2 but lacked the major inner shell protein VP6. Taken together, these data indicate that VP2, but not VP6, is an essential component of enzymatically active replicase particles.  相似文献   

2.
Metazoan histone mRNAs end in a highly conserved stem-loop structure followed by ACCCA. Previous studies have suggested that the stem-loop binding protein (SLBP) is the only protein binding this region. Using RNA affinity purification, we identified a second protein, designated 3'hExo, that contains a SAP and a 3' exonuclease domain and binds the same sequence. Strikingly, 3'hExo can bind the stem-loop region both separately and simultaneously with SLBP. Binding of 3'hExo requires the terminal ACCCA, whereas binding of SLBP requires the 5' side of the stem-loop region. Recombinant 3'hExo degrades RNA substrates in a 3'-5' direction and has the highest activity toward the wild-type histone mRNA. Binding of SLBP to the stem-loop at the 3' end of RNA prevents its degradation by 3'hExo. These features make 3'hExo a primary candidate for the exonuclease that initiates rapid decay of histone mRNA upon completion and/or inhibition of DNA replication.  相似文献   

3.
4.
The 3' end of mammalian histone mRNAs consisting of a conserved stem-loop and a terminal ACCCA interacts with a recently identified human 3' exonuclease designated 3'hExo. The sequence-specific interaction suggests that 3'hExo may participate in the degradation of histone mRNAs. ERI-1, a Caenorhabditis elegans homologue of 3'hExo, has been implicated in degradation of small interfering RNAs. We introduced a number of mutations to 3'hExo to identify residues required for RNA binding and catalysis. To assure that the introduced mutations specifically target one of these two activities of 3'hExo rather than cause global structural defects, the mutant proteins were tested in parallel for the ability both to bind the stem-loop RNA and to degrade RNA substrates. Our analysis confirms that 3'hExo is a member of the DEDDh family of 3' exonucleases. Specific binding to the RNA requires the SAP domain and two lysines located immediately to its C terminus. 3'hExo binds with the highest affinity to the wild-type 3' end of histone mRNA, and any changes to this sequence reduce efficiency of binding. 3'hExo has only residual, if any, 3' exonuclease activity on DNA substrates and localizes mostly to the cytoplasm, suggesting that in vivo it performs exclusively RNA-specific functions. Efficient degradation of RNA substrates by 3'hExo requires 2' and 3' hydroxyl groups at the last nucleotide. 3'hExo removes 3' overhangs of small interfering RNAs, whereas the double-stranded region is resistant to the enzymatic activity.  相似文献   

5.
6.
D Poncet  C Aponte    J Cohen 《Journal of virology》1993,67(6):3159-3165
Interaction between viral proteins and RNAs has been studied in rotavirus-infected cells. The use of UV cross-linking followed by immunoprecipitation and labeling with T4 polynucleotide kinase allowed us to detect interactions between RNA and nonstructural viral proteins. The RNAs linked to the nonstructural protein NSP3 have been identified as rotavirus mRNAs, and the sequences of the RNase T1-protected fragments have been established. These sequences correspond to the 3' end sequence common to all rotavirus group A genes. We also show that the last 3' nucleotide is cross-linked to the protein and that monomeric and multimeric forms of NSP3 are bound to rotavirus mRNA. The role of NSP3 in rotavirus replication is discussed in the light of our results and by comparison with other RNA-binding proteins of members of the Reoviridae family.  相似文献   

7.
8.
D D Loeb  K J Gulya    R Tian 《Journal of virology》1997,71(1):152-160
The template for hepadnavirus plus-strand DNA synthesis is a terminally redundant minus-strand DNA. An intramolecular template switch during plus-strand DNA synthesis, which permits plus-strand DNA elongation, has been proposed to be facilitated by this terminal redundancy, which is 7 to 9 nucleotides long. The aim of this study was to determine whether the presence of identical copies of the redundancy on the minus-strand DNA template was necessary and/or sufficient for the template switch and at what position(s) within the redundancy the switch occurs for duck hepatitis B virus. When dinucleotide insertions were placed within the copy of the redundancy at the 3' end of the minus-strand DNA template, novel sequences were copied into plus-strand DNA. The generation of these novel sequences could be explained by complete copying of the redundancy at the 5' end of the minus-strand DNA template followed by a template switch and then extension from a mismatched 3' terminus. In a second set of experiments, it was found that when one copy of the redundancy had either three or five nucleotides replaced the template switch was inhibited. When the identical, albeit mutant, sequences were restored in both copies of the redundancy, template switching was not necessarily restored. Our results indicate that the terminal redundancy on the minus-strand DNA template is necessary but not sufficient for template switching.  相似文献   

9.
Hardy RW  Rice CM 《Journal of virology》2005,79(8):4630-4639
The 3'-untranslated region of the Sindbis virus genome is 0.3 kb in length with a 19-nucleotide conserved sequence element (3' CSE) immediately preceding the 3'-poly(A) tail. The 3' CSE and poly(A) tail have been assumed to constitute the core promoter for minus-strand RNA synthesis during genome replication; however, their involvement in this process has not been formally demonstrated. Utilizing both in vitro and in vivo analyses, we have examined the role of these elements in the initiation of minus-strand RNA synthesis. The major findings of this study with regard to efficient minus-strand RNA synthesis are the following: (i) the wild-type 3' CSE and the poly(A) tail are required, (ii) the poly(A) tail must be a minimum of 11 to 12 residues in length and immediately follow the 3' CSE, (iii) deletion or substitution of the 3' 13 nucleotides of the 3' CSE severely inhibits minus-strand RNA synthesis, (iv) templates possessing non-wild-type 3' sequences previously demonstrated to support virus replication do not program efficient RNA synthesis, and (v) insertion of uridylate residues between the poly(A) tail and a non-wild-type 3' sequence can restore promoter function to a limited extent. This study shows that the optimal structure of the 3' component of the minus-strand promoter is the wild-type 3' CSE followed a poly(A) tail of at least 11 residues. Our findings also show that insertion of nontemplated bases can restore function to an inactive promoter.  相似文献   

10.
  • 1.1. A radiopolyadenylated rabbit globin mRNA was treated with different concentrations of ribonuclease V1 from cobra venom.
  • 2.2. The enzymatic digests were chromatographed on an aminophenylboronate-agarose column, which specifically captured the cap structure i.e. n7G(5') ppp (5') NmP.
  • 3.3. When the capture fragment was chromatographed on a Sephadex G-100 column, its size was smaller than the native molecule and also bore radioactivity, i.e. a poly(A) tail.
  • 4.4. These results provide evidence that the 5' end (which encompasses the cap structure) of rabbit globin mRNA is hybridized and in close proximity to its 3' end.
  • 5.5. We conclude that this conformation is required for messenger translation efficiency.
  相似文献   

11.
Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. The capsid protein VP1 is synthesized from a subgenomic RNA that contains two open reading frames (ORFs), ORF2 and ORF3, and the 3' untranslated region (UTR). ORF2 and ORF3 code for the capsid protein (VP1) and a small structural basic protein (VP2), respectively. We discovered that the yields of virus-like particles (VLPs) composed of VP1 are significantly reduced when this protein is expressed from ORF2 alone. To determine how the 3' terminus of the NV subgenomic RNA regulates VP1 expression, we compared VP1 expression levels by using recombinant baculovirus constructs containing different 3' elements. High VP1 levels were detected by using a recombinant baculovirus that contained ORF2, ORF3, and the 3'UTR (ORF2+3+3'UTR). In contrast, expression of VP1 from constructs that lacked the 3'UTR (ORF2+3), ORF3 (ORF2+3'UTR), or both (ORF2 alone) was highly reduced. Elimination of VP2 synthesis from the subgenomic RNA by mutation resulted in VP1 levels similar to those obtained with the ORF2 construct alone, suggesting a cis role for VP2 in upregulation of VP1 expression levels. Comparisons of the kinetics of RNA and capsid protein expression levels by using constructs with or without ORF3 or the 3'UTR revealed that the 3'UTR increased the levels of VP1 RNA, whereas the presence of VP2 resulted in increased levels of VP1. Furthermore, VP2 increased VP1 stability and protected VP1 from disassembly and protease degradation. The increase in VP1 expression levels caused by the presence of VP2 in cis was also observed in mammalian cells.  相似文献   

12.
Kleiman FE  Manley JL 《Cell》2001,104(5):743-753
The mRNA polyadenylation factor CstF interacts with the BRCA1-associated protein BARD1, and this interaction represses the nuclear mRNA polyadenylation machinery in vitro. Given the suspected role of BRCA1/BARD1 in DNA repair, we tested whether inhibition of mRNA processing is linked to DNA damage. Strikingly, we found that 3' cleavage in extracts from cells treated with hydroxyurea or ultraviolet light was strongly, but transiently, inhibited. Although no changes were detected in CstF, BARD1, and BRCA1 protein levels, increased amounts of a CstF/BARD1/BRCA1 complex were detected. Supporting the physiological significance of these results, a previously identified tumor-associated germline mutation in BARD1 (Gln564His) reduced binding to CstF and abrogated inhibition of polyadenylation. Together these results indicate a link between mRNA 3' processing and DNA repair and tumor suppression.  相似文献   

13.
The poliovirus-encoded, membrane-associated polypeptide 2C is believed to be required for initiation and elongation of RNA synthesis. We have expressed and purified recombinant, histidine-tagged 2C and examined its ability to bind to the first 100 nucleotides of the poliovirus 5' untranslated region of the positive strand and its complementary 3'-terminal negative-strand RNA sequences. Results presented here demonstrate that the 2C polypeptide specifically binds to the 3'-terminal sequences of poliovirus negative-strand RNA. Since this region is believed to form a stable cloverleaf structure, a number of mutations were constructed to examine which nucleotides and/or structures within the cloverleaf are essential for 2C binding. Binding of 2C to the 3'-terminal cloverleaf of the negative-strand RNA is greatly affected when the conserved sequence, UGUUUU, in stem a of the cloverleaf is altered. Mutational studies suggest that interaction of 2C with the 3'-terminal cloverleaf of negative-strand RNA is facilitated when the sequence UGUUUU is present in the context of a double-stranded structure. The implication of 2C binding to negative-strand RNA in viral replication is discussed.  相似文献   

14.
The interleukin-1 receptor antagonist (IL-1ra) is a protein capable of inhibiting receptor binding and biological activities of IL-1 without inducing an IL-1-like response. Equilibrium binding and kinetic experiments show that IL-1ra binds to the 80-kDa IL-1 receptor on the murine thymoma cell line EL4 with an affinity (KD = 150 pM) approximately equal to that of IL-1 alpha and IL-1 beta for this receptor. However, IL-1ra is unable to induce two early events associated with IL-1 activity. Surface-bound IL-1ra does not undergo receptor-mediated internalization, and IL-1ra does not activate the protein kinase activity responsible for down-modulation of the EGF receptor on the murine 3T3 fibroblast cell line. The failure to induce general, early responses characteristic of IL-1 indicates that IL-1ra is unlikely to act as an agonist on any cell expressing the 80-kDa receptor.  相似文献   

15.
J Andersen  N Delihas 《Biochemistry》1990,29(39):9249-9256
  相似文献   

16.
The binding of sperm to the zona pellucida is an integral part of the mammalian fertilization process, investigated most extensively in the mouse. Several sperm receptors for the murine zona pellucida have been studied (Snell WJ, White JM. 1996. Cell 85:629-637; Wassarman PM. 1999. Cell 96:175-183), but the most compelling evidence exists for beta-1,4-galactosyltransferase (GalTase). Considering that GalTase is present on the surface of porcine sperm (Larson JL, Miller DJ. 1997. Biol Reprod 57:442-453), we investigated the role of GalTase in porcine sperm-zona binding. Sperm surface GalTase catalyzed the addition of uridine diphosphate-[(3)H]galactose to the 55 kDa group of the porcine zona pellucida proteins implicated in sperm binding, demonstrating that GalTase binds the porcine zona. The functional importance of GalTase-zona pellucida binding was tested. Addition of uridine diphosphate galactose, a substrate that completes the GalTase enzymatic reaction and disrupts GalTase mediated adhesion, had no effect on binding of sperm to porcine oocytes. Furthermore, removal of the GalTase zona ligand by incubation of oocytes with N-acetylglucosaminidase had no effect on binding of sperm to oocytes. These results suggest that GalTase is not necessary for sperm to bind to the zona pellucida. Digestion of isolated porcine zona proteins with N-acetylglucosaminidase did not affect the biological activity of soluble porcine zona proteins in competitive sperm-zona binding assays, suggesting that GalTase alone is not sufficient to mediate sperm-zona attachment. From these results, it appears that, although GalTase is able to bind porcine zona proteins, its function in porcine sperm-zona binding is not necessary or sufficient for sperm-zona binding. This supports the contention that porcine sperm-zona binding requires redundant gamete receptors.  相似文献   

17.
TNF is critical for immunity against Mycobacterium tuberculosis infection; however, the relative contributions of the soluble and transmembrane forms of TNF in this immunity are unknown. Using memTNF mice, which express only the transmembrane form of TNF, we have addressed this question. Wild-type (WT), TNF-/-, and transmembrane TNF (memTNF) mice were infected with M. tuberculosis by aerosol. TNF-/- mice developed overwhelming infection with extensive pulmonary necrosis and died after only 33 days. memTNF mice, like WT mice, contained bacterial growth for over 16 wk, developed an Ag-specific T cell response, and initially displayed compact granulomas, comprised of both lymphocytes and macrophages. Expression of mRNA for the chemokines CXCL10, CCL3, CCL5, and CCL7 was comparable in both WT and memTNF mice. As the infection progressed, however, the pulmonary lesions in memTNF mice became larger and more diffuse, with increased neutrophil accumulation and necrosis. This was accompanied by increased influx of activated memory T cells into the lungs of memTNF mice. Eventually, these mice succumbed to infection with a mean time to death of 170 days. The expression of memTNF on T cells is functionally important because the transfer of T cells from memTNF, but not TNF-/- mice, into either RAG-/- or TNF-/- mice conferred the same survival advantage on the M. tuberculosis-infected recipient mice, as the transfer of WT T cells. Therefore, memTNF, in the absence of soluble TNF, is sufficient to control acute, but not chronic, M. tuberculosis infection, in part through its expression on T cells.  相似文献   

18.
19.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号