首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

2.
Cytosolic free Ca2+ ([Ca2+]i) homeostasis was investigated in mouse peritoneal macrophages and in the macrophage-like cell line J774. [Ca2+]i measurements were performed in both cells in suspension and cells in monolayers loaded with either quin2 or fura-2. Resting [Ca2+]i was 110-140 and 85-120 nM for cell suspensions and monolayers, respectively. There were no significant differences in [Ca2+]i between the two macrophage populations whether quin2 or fura-2 were used as Ca2+ indicators. Addition of heat-aggregated IgG, IgG-coated erythrocyte ghosts, or a rat monoclonal antibody (2.4G2) directed against mouse Fc receptor II induced a rise in [Ca2+]i. This [Ca2+]i increase was consistently observed in J774 and peritoneal macrophage suspensions and in J774 macrophage monolayers; in contrast it was observed inconsistently in peritoneal macrophages in monolayer cultures. The increase in [Ca2+]i induced by ligation of Fc receptors was inhibited totally in macrophages in suspension and by 80% in macrophages in monolayers by a short preincubation of macrophages with PMA; however, phagocytosis itself was unaffected. The effect of reducing cytosolic Ca2+ to very low concentrations on Fc receptor-mediated phagocytosis was also investigated. By incubating macrophages with high concentrations of quin2/AM in the absence of extracellular Ca2+, or by loading EGTA into the cytoplasm, the [Ca2+]i was buffered and clamped to 1-10 nM. Despite this, the phagocytosis of IgG-coated erythrocytes proceeded normally. These observations confirm the report of Young et al. (Young, J. D., S. S. Ko, and Z. A. Cohn. 1984. Proc. Natl. Acad. Sci. USA. 81:5430-5434) that ligation of Fc receptors causes Ca2+ mobilization in macrophages. However, these results confirm and extend the findings of McNeil et al. (McNeil, P. L., J. A. Swanson, S. D. Wright, S. C. Silverstein, and D. L. Taylor. 1986. J. Cell Biol. 102:1586-1592) that a rise in [Ca2+]i is not required for Fc receptor-mediated phagocytosis; and they provide direct evidence that Fc receptor-mediated phagocytosis occurs normally even at exceedingly low [Ca2+]i.  相似文献   

3.
Mechanisms of the Ca2+ signal generation and regulation in peritoneal macrophages activated with purinergic agonists (ATP, UTP), as well as endoplasmic Ca(2+)-ATPase inhibitors, were investigated. Using a wide range of drugs affecting the intracellular signaling systems' components, an important role of second messenger systems and other key functional cellular systems in Ca2+ signals regulation in the macrophages, was shown.  相似文献   

4.
5.
We used whole-cell, voltage-clamp methodology to study the activation and inhibition of cationic currents in neutrophil. Cationic channels involved were impermeable to N-methyl-D-glucamine and to choline, but permeable to Na+, K+, Cs+, tris(hydroxymethyl)amino-ethane, and tetraethylammonium. N-formyl-L-methionyl-L-leucyl-L-phenylalanine, the Ca(2+)-ionophore A23187, and phorbol myristate acetate activated the cationic current. Activated currents showed voltage dependence and outward rectification. The Ca(2+)-chelator 1,2 bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate markedly inhibited A23187-induced currents, but only partially decreased phorbol ester- or chemoattractant-induced currents. Dibutyryl cAMP diminished only the chemoattractant-induced currents. The adenosine analogs 5'N-ethylcarboxamidoadenosine and N6-cyclohexyladenosine blocked the currents induced by all agents. Thus, we conclude that activation and inhibition of cationic channels in human neutrophils involve both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

6.
Repetitive Ca(2+) release from the endoplasmic reticulum (ER) is necessary for activation of mammalian eggs. Influx and release of Mn(2+) and Ca(2+) during Ca(2+) oscillations induced by injection of sperm extract (SE) into mouse eggs were investigated by Mn(2+)-quenching of intracellular Fura-2 after adding Mn(2+) to external medium. Mn(2+)/Ca(2+) influx was detected at the resting state. A marked Mn(2+)/Ca(2+) influx occurred during the first Ca(2+) release upon SE injection, and persistently facilitated Mn(2+)/Ca(2+) influx was observed during steady Ca(2+) oscillations. As intracellular Mn(2+) concentration ([Mn(2+)](i)) increased progressively, periodic [Mn(2+)](i) rises appeared, corresponding to each Ca(2+)transient but taking a slower time course. A numerical simulation based on continuous Mn(2+)/Ca(2+) influx-extrusion across the plasma membrane and release-uptake across the ER membrane in a competitive manner mimicked well the Mn(2+) oscillations calculated from experimental data, strongly suggesting that repetitive Mn(2+) release develops after Mn(2+) entry and uptake into the ER. In other experiments, a marked Mn(2+) influx occurred upon Mn(2+) addition to Ca(2+)-free medium after depletion of the ER using an ER Ca(2+) pump inhibitor plus repeated injection of inositol 1,4,5-trisphosphate (InsP(3)). No significant increase in Mn(2+) influx was induced by injection of SE, InsP(3), or Ca(2+), when Ca(2+) release was prevented by pre-injection of an antibody against the InsP(3) receptor. We concluded that Ca(2+) influx is activated during the initial large Ca(2+)release possibly by a capacitative mechanism and kept facilitated during steady Ca(2+) oscillations. The finding that repetitive Mn(2+) release is caused by continuous Mn(2+) entry suggests that continuous Ca(2+) influx may play a critical role in refilling the ER and, thereby, maintaining Ca(2+)oscillations in mammalian fertilization.  相似文献   

7.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

8.
As a final stage of cell signal transduction, secretory cells release hormones by exocytosis. Before secretory granules contact with the cell membrane for fusion, an actin-network barrier must dissociate as a prelude. To elucidate dynamical behaviors of secretory granules in actin networks, in vitro assembly and disassembly processes of actin networks were examined by means of dynamic light-scattering spectroscopy. We studied actin polymerization in the presence of chromaffin granules isolated from bovine adrenal medullas and found that the entanglement of actin filaments rapidly formed cages that confined granules in them. We also studied the effect of gelsolin, one of actin-severing proteins, on the network of actin filaments preformed in the presence of chromaffin granules. It turned out that the cages that confined granules rapidly disappeared when gelsolin was added in the presence of free Ca2+ ions. A semiquantitative analysis of dynamic light-scattering spectra permitted us to estimate the changes in the mobility (or the translational diffusion coefficient) of chromaffin granules in the actin network with its assembly and Ca(2+)-dependent disassembly by gelsolin. Based on the present results and some pieces of evidence in the literature, a model is proposed for biophysical situations before, during, and after an exocytotic event.  相似文献   

9.
Studies with populations of macrophages have produced conflicting results concerning the possibility that the concentration of intracellular ionized calcium [( Ca2+]i) may act as an important mediator for phagocytosis. Since asynchronous changes in [Ca2+]i in individual cells undergoing phagocytosis may be averaged to undetectability in population studies, we studied single adhering murine macrophages using fura-2 and our previously described digital imaging system. The proportion of macrophages phagocytosing IgG-coated latex beads was greater than for uncoated beads (percent phagocytosing cells: 71 +/- 7 vs. 27 +/- 7, P less than 0.01). Phagocytosis of IgG-coated and uncoated beads was always associated with a calcium transient that preceded the initiation of phagocytosis. No calcium transients were detected in cells that bound but did not phagocytose beads. Four major differences between Fc receptor-mediated and nonspecific phagocytosis were detected: (a) the duration of calcium transients was longer for nonspecific phagocytosis compared with Fc receptor-mediated phagocytosis (69.9 +/- 10.2 vs. 48.7 +/- 4.7 s, P less than 0.05) and the magnitude of calcium transients was less for nonspecific phagocytosis (178 +/- 43 vs. 349 +/- 53 nM, P less than 0.05); (b) removal of extracellular calcium abolished the calcium transients associated with nonspecific phagocytosis but had no effect on those associated with receptor-mediated phagocytosis; (c) in the absence of extracellular calcium, buffering intracellular calcium with a chelator reduced Fc receptor-mediated phagocytosis but had no additive inhibitory effect on nonspecific phagocytosis; and (d) inhibition of protein kinase C (PKC) with staurosporine inhibited nonspecific phagocytosis but had no effect on receptor-mediated phagocytosis. Our observations suggest that despite both types of phagocytosis being associated with intracellular calcium transients, the role played by intracellular calcium in the signaling pathways may differ for Fc receptor-mediated and nonspecific phagocytosis by elicited murine macrophages.  相似文献   

10.
Jeon D  Chu K  Jung KH  Kim M  Yoon BW  Lee CJ  Oh U  Shin HS 《Cell calcium》2008,43(5):482-491
Na(+)/Ca(2+) exchanger (NCX), by mediating Na(+) and Ca(2+) fluxes bi-directionally, assumes a role in controlling the Ca(2+) homeostasis in the ischemic brain. It has been suggested that the three isoforms of NCX (NCX1, 2 and 3) may be differentially involved in permanent cerebral ischemia. However, the role of NCX2 has not been defined in ischemic reperfusion injury after a transient focal cerebral ischemia. Furthermore, it is not known whether NCX2 imports or exports intracellular Ca(2+) ([Ca(2+)](i)) following ischemia and reperfusion. To define the role of NCX2 in ischemia and reperfusion, we examined mice lacking NCX2, in vivo and in vitro. After an in vitro ischemia, a significantly slower recovery in population spike amplitudes, a sustained elevation of [Ca(2+)](i) and an increased membrane depolarization were developed in the NCX2-deficient hippocampus. Moreover, a transient focal cerebral ischemia in vivo produced a larger infarction and more cell death in the NCX2-deficient mouse brain. In particular, in the wild type brain, NCX2-expressing neurons were largely spared from cell death after ischemia. Our results suggest that NCX2 exports Ca(2+) in ischemia and thus protects neuronal cells from death by reducing [Ca(2+)](i) in the adult mouse brain.  相似文献   

11.
12.
We provide novel evidence that human melanoma cell lines (M10, M14, SK-MEL28, SK-MEL93, 243MEL, 1074MEL, OCM-1, and COLO38) expressed, at mRNA and protein levels, either Ca(2+)-independent phospholipase A(2) (iPLA(2)) or cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form. Normal human melanocytes contained the lowest levels of both PLA(2)s. Cyclooxygenase-1 and -2 (COX-1 and COX-2) were also expressed in cultured tumor cells as measured by Western blots. The most pronounced overexpression of iPLA(2) and COX-1 was found in two melanoma-derived cells, M14 and COLO38. Normal human melanocytes and the M10 melanoma cell line displayed no COX-2 expression. Using subcellular fractionation, Western blot and confocal microcopy analyses, in paradigmatic SK-MEL28 and SK-MEL93 cells we showed that iPLA(2), COX-1 and even cPLA(2) were equally located in the cytosol, membrane structures and perinuclear region while COX-2 was preferentially associated with the cytosol. Specific inhibitors of these three enzymes significantly reduced the basal proliferation rate either in melanocytes or in melanoma cell lines. These results, coupled with the inhibition of the cell proliferation by electroporation of melanoma cells with cPLA(2) or COX-2 antibodies, demonstrate that a possible correlation between PLA(2)-COX expression and tumor cell proliferation in the melanocytic system does exist. In addition, the high expression level of both PLA(2)s and COXs suggests that eicosanoids modulate cell proliferation and tumor invasiveness.  相似文献   

13.
A cytosolic sperm protein(s), referred to as the sperm factor (SF), is thought to induce intracellular calcium ([Ca(2+)](i)) oscillations during fertilization in mammalian eggs. These oscillations, which are responsible for inducing complete egg activation, persist for several hours. Nevertheless, whether a protracted release of SF is responsible for the duration of the oscillations is unknown. Using a combination of intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), sperm removal, reinjection of the withdrawn sperm, and [Ca(2+)](i) monitoring, we determined that 30 min was necessary for establishing oscillations. Importantly, a significant portion of the Ca(2+) activity became dissociated from the sperm within 15-60 min after entry, and by 120 min post-ICSI or IVF, sperm were unable to induce oscillations. The initiation of oscillations coincided with exposure and solubilization of the perinuclear theca (PT), as evidenced by transmission electron microscopy, although disassembly of the PT was not required for commencement of the [Ca(2+)](i) responses. Remarkably, despite its complete release into the ooplasm, SF associated with nuclear structures at the time of pronuclear formation. Lastly, release of SF was not affected by the cell cycle. We conclude that mouse sperm serves as a carrier for SF, which is rapidly and completely solubilized to establish [Ca(2+)](i) oscillations.  相似文献   

14.
Effects of Pb(2+) on vesicular catecholamine release in intact and ionomycin-permeabilized PC12 cells were investigated using carbon fibre microelectrode amperometry. Changes in intracellular Pb(2+) and Ca(2+) were measured from indo-1 fluorescence by confocal laser scanning microscopy. Depolarization of intact cells and superfusion of permeabilized cells with saline containing > or = 100 microm Ca(2+) rapidly evokes quantal catecholamine release. Superfusion with up to 10 microm Pb(2+) -containing saline evokes release of similar catecholamine quanta after a concentration-dependent delay. Thresholds to induce exocytosis within 30 min of exposure are between 1 and 10 microm Pb(2+) in intact cells and between 10 and 30 nm Pb(2+) in permeabilized cells. Additional inhibition of exocytosis occurs in permeabilized cells exposed to 10 microm Pb(2+). Using membrane-impermeable and -permeable chelators it is demonstrated that intracellular Ca(2+) is not required for Pb(2+) -induced exocytosis. In indo- 1-loaded cells Pb(2+) reduces the fluorescence intensity after a concentration-dependent delay, whereas the fluorescence ratio, indicating intracellular Ca(2+) concentration, remains unchanged. The delay to detect an increase in free intracellular Pb(2+) (> or = 30 nm) is much longer than the delay to Pb(2+) -induced exocytosis, indicating that cytoplasmic components buffer Pb(2+) with high affinity. It is concluded that Pb(2+) acts as a high-affinity substitute for Ca(2+) to trigger essential steps leading to vesicular catecholamine release, which occurs when only approximately 20% of the intracellular high-affinity binding capacity ( approximately 2 attomol/cell) is saturated with Pb(2+).  相似文献   

15.
Ca(2+) sparks are spatially localized intracellular Ca(2+) release events that were first described in 1993. Sparks have been ascribed to sarcoplasmic reticulum Ca(2+) release channel (ryanodine receptor, RyR) opening induced by Ca(2+) influx via L-type Ca(2+) channels or by spontaneous RyR openings and have been thought to reflect Ca(2+) release from a cluster of RyR. Here we describe a pharmacological approach to study sparks by exposing ventricular myocytes to caffeine with a rapid solution-switcher device. Sparks under these conditions have properties similar to naturally occurring sparks in terms of size and intracellular Ca(2+) concentration ([Ca(2+)](i)) amplitude. However, after the diffusion of caffeine, sparks first appear close to the cell surface membrane before coalescing to produce a whole cell transient. Our results support the idea that a whole cell [Ca(2+)](i) transient consists of the summation of sparks and that Ca(2+) sparks consist of the opening of a cluster of RyR and confirm that characteristics of the cluster rather than the L-type Ca(2+) channel-RyR relation determine spark properties.  相似文献   

16.
Pang ZP  Bacaj T  Yang X  Zhou P  Xu W  Südhof TC 《Neuron》2011,70(2):244-251
Two families of Ca(2+)-binding proteins have been proposed as Ca(2+) sensors for spontaneous release: synaptotagmins and Doc2s, with the intriguing possibility that Doc2s may represent high-affinity Ca(2+) sensors that are activated by deletion of synaptotagmins, thereby accounting for the increased spontaneous release in synaptotagmin-deficient synapses. Here, we use an shRNA-dependent quadruple knockdown of all four Ca(2+)-binding proteins of the Doc2?family to confirm that Doc2-deficient synapses exhibit a marked decrease in the frequency of spontaneous release events. Knockdown of Doc2s in synaptotagmin-1-deficient synapses, however, failed to reduce either the increased spontaneous release or the decreased evoked release of these synapses, suggesting that Doc2s?do not constitute Ca(2+) sensors for asynchronous release. Moreover, rescue experiments revealed that the decrease in spontaneous release induced by the Doc2?knockdown in wild-type synapses is fully reversed by mutant Doc2B lacking Ca(2+)-binding sites. Thus, our data suggest that Doc2s are modulators of spontaneous synaptic transmission that act by?a Ca(2+)-independent mechanism.  相似文献   

17.
Ballou LM  Jiang YP  Du G  Frohman MA  Lin RZ 《FEBS letters》2003,550(1-3):51-56
The mammalian target of rapamycin (mTOR) promotes increased protein synthesis required for cell growth. It has been suggested that phosphatidic acid, produced upon activation of phospholipase D (PLD), is a common mediator of growth factor activation of mTOR signaling. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor induced mTOR autophosphorylation at Ser2481 and phosphorylation of two mTOR effectors, 4E-BP1 and p70 S6 kinase. These PE-induced phosphorylations were greatly reduced in cells depleted of intracellular Ca(2+). PE activation of PLD was also inhibited in Ca(2+)-depleted cells. Incubation of cells with 1-butanol to inhibit PLD signaling attenuated PE-induced phosphorylation of mTOR, 4E-BP1 and p70 S6 kinase. By contrast, platelet-derived growth factor (PDGF)-induced phosphorylation of these proteins was not blocked by Ca(2+) depletion or 1-butanol treatment. These results suggest that the alpha(1A) adrenergic receptor promotes mTOR signaling via a pathway that requires an increase in intracellular Ca(2+) and activation of PLD. The PDGF receptor, by contrast, appears to activate mTOR by a distinct pathway that does not require Ca(2+) or PLD.  相似文献   

18.
Fertilized mouse eggs exhibit repetitive rises in intracellular Ca(2+) concentration ([Ca(2+)](i)) necessary for egg activation. Precise spatiotemporal dynamics of each [Ca(2+)](i) rise were investigated by high-speed Ca(2+) imaging during early development of monospermic eggs. Every [Ca(2+)](i) rise involved a Ca(2+) wave. In the first Ca(2+) transient, [Ca(2+)](i) increased in two steps separated by a "shoulder" point, suggesting two distinct Ca(2+) release mechanisms. The first step was a Ca(2+) wave that propagated from the sperm-fusion site to its antipode in 4-5 s (velocity, approximately 20 microm/s in most eggs). The second step from the shoulder to the peak was a nearly uniform [Ca(2+)](i) rise of 12-15 s. A slight cytoplasmic movement followed the Ca(2+) wave in the same direction and recovered in 25-35 s. These characteristics changed as follows, as Ca(2+) oscillations progressed during the second meiosis up to their cessation at the stage of pronuclei formation ( approximately 3 h after fertilization). (1) The duration of Ca(2+) transients became shorter. (2) The shoulder point shifted to higher levels and the first step occupied most of the rising phase. (3) The rate of [Ca(2+)](i) rise became greater and wave speeds increased up to 80-100 microm/s or more. (4) The transient cytoplasmic movement always resulted from the Ca(2+) wave, although its displacement became smaller. (5) The Ca(2+) wave initiation site was freed from the sperm-fusion or -entry site and eventually localized in the cortex of the vegetal hemisphere. Since the shift of the wave initiation site to the vegetal cortex is observed in fertilized eggs of nemertean worms and ascidians, this might be an evolutionarily conserved feature.  相似文献   

19.
The patch-clamp technique was used to study mechanisms of ATP-induced Ca2+ influx in rat peritoneal macrophages. The experiments on whole-cell and patch membranes have shown that extracellular ATP activates channels permeable to di- and monovalent inorganic cations. Ratios of unitary channel conductances in 105 mM Ca2+, Sr2+, Mn2+, Ba2+ and normal sodium solutions were 1.0, 0.95, 0.75, 0.55 and 0.85, respectively. The channels could open in the presence of non-hydrolyzable GTP analogues in artificial intracellular solution. The data are consistent with the hypothesis that a GTP-binding protein is involved in receptor-to-channel coupling.  相似文献   

20.
Thrombin stimulation of rabbit ventricular myocytes activates a membrane-associated, Ca(2+)-independent phospholipase A(2) (PLA(2)) capable of hydrolyzing plasmenylcholine (choline plasmalogen), plasmanylcholine (alkylacyl choline phospholipid), and phosphatidylcholine substrates. To identify the endogenous phospholipid substrates, we quantified the effects of thrombin stimulation on diradyl phospholipid mass and arachidonic acid and lysophospholipid production. Thrombin stimulation resulted in a selective decrease in arachidonylated plasmenylcholine, with no change in arachidonylated phosphatidylcholine. The decrease in arachidonylated plasmenylcholine was accompanied by an increase in plasmenylcholine species containing linoleic and linolenic acids at the sn-2 position. A decrease in arachidonylated plasmenylethanolamine was also observed after thrombin stimulation, with no concomitant change in arachidonylated phosphatidylethanolamine. Thrombin stimulation resulted in the selective production of lysoplasmenylcholine, with no increase in lysophosphatidylcholine content. There was no evidence for significant acetylation of lysophospholipids to form platelet-activating factor. Arachidonic acid released after thrombin stimulation was rapidly oxidized to prostacyclin. Thus thrombin-stimulated Ca(2+)-independent PLA(2) selectively hydrolyzes arachidonylated plasmalogen substrates, resulting in production of lysoplasmalogens and prostacyclin as the principal bioactive products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号