首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine phosphorylation and protein tyrosine kinase (PTK) activity in the growth cone membrane-associated glycoprotein (GCGP) fraction of 1-day-old rat brain were examined. Using immunoblotting and immunoprecipitation techniques, pp60c-src was identified as one of the major PTKs associated with GCGPs. Furthermore, only GCGP-associated src that was also tyrosine phosphorylated was active. Immunoprecipitation experiments using various src antibodies revealed that pp60c-src contributed partially to the PTK activity detected in GCGPs, and that it is associated with several proteins of Mr 140 K, 120 K, 85 K and 50 K. This association of src protein with GCGPs was specific, and another src family member p59fyn, which is also abundant in the brain, did not exhibit such an association. In addition to pp60c-src, the GCGP fraction contained several major phosphotyrosine-containing proteins of Mr 140 K, and a 97/90 K doublet that corresponded to the beta subunits of IGF-I/insulin receptors. These studies show that pp60c-src associated with GCGPs is an active PTK that could be involved in neuronal growth and development, transmembrane signalling, and in recognition and/or adhesive events.  相似文献   

2.
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We report here results of a study of the effect of sequential administration of 1 microgram 17 beta-estradiol in vivo on the incorporation of L-[35S]methionine into specific proteins in vitro in the immature rat uterus. One-dimensional SDS-PAGE analysis of labeled secreted uterine proteins and cellular proteins extracted from the luminal epithelial and from the stroma plus myometrial uterine fractions revealed that estradiol preferentially stimulated the synthesis of 110 K, 74 K and 66 K secreted proteins, 180 K and 110 K epithelial proteins and a 175 K stroma-myometrial protein among others, while it decreased the relative rate of synthesis of a 32.5 K secreted protein and a 70 K stroma-myometrial protein. The 110 K protein, a secreted luminal epithelial protein whose labeling in vitro dramatically increased greater than 60-fold per mg endometrial DNA after in vivo estrogen stimulation, may be a useful marker for studying estrogen action in the luminal epithelium of the immature rat uterus. Comparison of the secreted proteins labeled at 28 h (4 h after a second injection) and at 54 h (6 h after a third injection) revealed that estradiol effected a sequential change in the pattern of synthesis of secreted uterine proteins in vitro. Comparison of the number and magnitude of changes in the synthesis of specific proteins in the luminal epithelium and the stroma plus myometrium revealed that protein synthesis in the luminal epithelium is clearly more responsive to estradiol and readily distinguishable from the responsiveness of the stroma plus myometrium.  相似文献   

4.
The optimal conditions for the endogenous phosphorylation of hen spinal cord cytosolic and membrane proteins with 5 μM [γ-32P]ATP, 10 mM MgCl2, were determined by 10% SDS-polyacrylamide gel electrophoresis, autoradiography, and microdensitometry. Phosphate incorporation increased linearly with concentrations ranging from 35–75 μg/100 μl for cytosolic proteins and 21–125 μg/200 μl for membrane proteins. Optimal incubation times, temperatures, and pH values were 60 s, 30°C, and 6.0, respectively, for spinal cord cytosolic proteins and 15 s, 45°C, and 8.0, respectively, for spinal cord membranes. Prominent species differences in protein phosphorylation between these fractions in hens and similarly prepared fractions in rats, co-electrophoresed, include 80K and 30K protein phosphate acceptors unique to rat spinal cord cytosol, 60K and 16K protein phosphate acceptors characteristic of rat spinal cord membranes, a 50K protein phosphate acceptor present only in hen spinal cord membranes, and greater phosphorylation of a more abundant 20K protein in both hen spinal cord fractions. The functional significance of these differences is presently unclear. However, their characterization provides a basis from which to launch future investigations of the biochemistry, pharmacology, and toxicology of spinal cord protein phosphorylation and indicates that caution should be exercised in the choice of an animal model with characteristics appropriate to those of the system it is representing.  相似文献   

5.
The human adenovirus 2 (Ad2) transformation genes are located in early region E1a (map position (mp) 1.3–4.5) and E1b (mp 4.6–11.2) on the linear duplex Ad2 DNA genome of Mr 23 × 106 (viral DNA is divided into 100 map units). E1b codes for three major proteins of apparent molecular weights 53,000 (53K), 19K, and 20K; smaller quantities of 21K, 22K, and 23K proteins that are related to 53K are also synthesized in Ad2-infected cells. Because the resolution and purification of these Ad2 candidate transformation proteins proved very difficult by conventional protein purification methods, the applicability of high-performance liquid chromatography (HPLC) methodology was examined. Starting with a crude cytoplasmic S100 fraction of Ad2-infected human cells, the resolution of the Ad2 E1b-coded 19K, 20K, 21K, 22K, and 23K proteins by reverse-phase HPLC using a C8 column and a linear 0–60% 1-propanol gradient in 0.5 m pyridine formate was achieved, E1b proteins purified under these conditions retained their immunological reactivity. By anion-exchange HPLC using a linear 10 mm to 1 m NaCl gradient in 10 mm 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.6, the same five Ad2 E1b-coded 19K–23K proteins were separated, with improved resolution of the 19K protein. Based on these findings, protocols for the extensive purification of the E1b-19K and E1b-20K proteins have been developed. These results illustrate the potential of HPLC methodology for the rapid purification of biologically interesting proteins from complex cellular mixtures of proteins.  相似文献   

6.
Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin-rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile of 60 min reperfusion following brief, reversible ischemia (15 min; 15I/60R) for comparison with irreversible I/R (60I/60R). Perfusate proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified by mass spectrometry (MS), revealing 26 tissue-specific proteins released during reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC-MS) and gel-free (LC-MS/MS) methods. A total of 192 tissue-specific proteins were identified during reperfusion post-60I. Identified proteins included those previously associated with I/R (myoglobin, CK-MB, cTnI, and cTnT), in addition to examples currently under investigation in large cohort studies (heart-type fatty acid binding protein; FABPH). The postischemic release profile of a novel cardiac-specific protein, cysteine and glycine-rich protein 3 (Csrp3; cardiac LIM domain protein) was validated by Western blot analysis. We also identified Csrp3 in serum from 6 of 8 patients postreperfusion following acute myocardial infarction. These studies indicate that animal modeling of biomarker release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans.  相似文献   

7.
Tyrosine phosphorylation and protein tyrosine kinase (PTK) activity in the growth cone membrane-associated glycoprotein (GCGP) fraction of 1-day-old rat brain were examined. Using immunoblotting and immunoprecipitation techniques, pp60c-src was identified as one of the major PTKs associated with GCGPs. Furthermore, only GCGP-associated src that was also tyrosine phosphorylated was active. Immunoprecipitation experiments using various src antibodies revealed that pp60c-src contributed partially to the PTK activity detected in GCGPs, and that it is associated with several proteins of Mr 140 K, 120 K, 85 K and 50 K. This association of src protein with GCGPs was specific, and another src family member p59fyn, which is also abundant in the brain, did not exhibit such an association. In addition to pp60c-src, the GCGP fraction contained several major phosphotryosine-containing proteins of Mr 140 K, and a 97/90 K doublet that corresponded to the beta subunits of IGF-I/ insulin receptors. These studies show that pp60c-src associated with GCGPs is an active PTK that could be involved in neuronal growth and development, transmembrane signalling, and in recognition and/or adhesive events. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
The major proteins of bovine seminal plasma, BSP-A1, BSP-A2, BSP-A3, and BSP-30kDa (collectively named BSP proteins) bind to phospholipids containing the phosphorylcholine moiety. An affinity purification method using a p-aminophenyl phosphorylcholine-Agarose (PPC-Agarose) affinity matrix was developed for their purification. In this study, we investigated the distribution of BSP-like analogues in seminal fluid of the human, porcine, hamster, mouse, and rat using this affinity matrix. Alcohol precipitates of the seminal plasma/seminal vesicle secretions (SP/SVS) were further delipidated using isopropyl ether:n-butanol (60:40). The protein preparations obtained were solubilized in a minimal volume of buffer A (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.02% NaN3), dialyzed against the same buffer, and applied to a PPC-Agarose column connected to a FPLC system. The unbound material was washed out and the adsorbed proteins eluted with buffer A containing 10 mM phosphorylcholine (PrC) and 10 M urea. The fractions were separated by SDS-PAGE, stained or transferred onto a nitrocellulose membrane, and probed with rabbit polyclonal anti-BSP antibodies. Anti-BSP cross-reacting proteins were detected in the seminal fluids of all the species investigated. Moreover, many of these proteins bound to the affinity matrix. The BSP proteins and their immunoreacting analogues appear to be ubiquitous in mammals and may possibly be involved in a common function such as in the modification of the lipid content of the sperm plasma membrane. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Proteins extracted from the 60 S rat liver ribosomal subunit with 50% ethanol/0.5 M K Cl produced only a partial reactivation of the corresponding core particles. In contrast, the same split proteins were able to reactivate the core particles prepared with dimethyl-maleic anhydride (DMMA) to the same level as that observed using the DMMA-split proteins, i.e. 60-80% of the control according to the catalytic activities tested. Comparative analysis of the two split protein fractions showed only four common proteins: P1-P2, which alone restored part of the activities, especially the EF-2-dependent GTPase one, and L10a, L12, which must be responsible for the additional reactivation. The poor ability of the ethanol/KCl core particles to be reactivated was shown to be probably related to a conformational alteration which destabilized the 5 S RNA-protein complex. Proteins present in the ethanol/KCl wash of Saccharomyces cerevisiae 60 S subunits were found to be partly active in subunit reconstitution using rat liver DMMA core particles.  相似文献   

10.
Catechol-O-methyltransferase (COMT) was visualized in homogenates and subcellular fractions of rat tissues, including liver and brain, by gel electrophoresis, electrophoretic transfer of proteins to nitrocellulose (Western blotting), and immune fixation with antiserum to highly purified soluble rat liver COMT. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of all tissue homogenates examined revealed three major immune-specific proteins with apparent molecular weights 23,000, 26,000, and 66,000 (23K, 26K and 66K). Centrifugation of homogenates at 100,000 X g for 60 min resulted in the enrichment of the 26K species protein in the pellet whereas the 23K and 66K proteins were the predominant forms in the supernatant. The 66K protein appeared in variable amounts depending on the tissue being examined and the length of transfer of protein and is assumed to be an "aggregate" of the smaller form(s). The 26K protein was essentially the only immunoreactive species seen in a purified preparation of rat liver outer mitochondrial membrane. Isoelectric focusing (IEF) under denaturing conditions and two-dimensional gel electrophoresis of brain and liver fractions showed that the 23K protein was resolved into three bands of pI 5.1, 5.2, and 5.3, whereas the 26K protein had a pI of 6.2. Analysis of COMT activity in slices from nondenaturing IEF gels indicated that the pI 5.1-5.3 species are biologically active; the pI 6.2 species could not be detected under these conditions. COMT activity was demonstrated, however, in outer mitochondrial membranes from rat liver, which contain predominantly the 26K, pI 6.2 immunoreactive species. The major form of COMT in all rat tissues examined is "soluble" with an apparent Mr of 23K and a pI of 5.2. The nature of the modifications giving rise to pI 5.1 and 5.3 forms of this enzyme are not clear, nor is the relationship between the 23K and 26K forms. Further studies are needed to elucidate the relationship of immunoreactive forms of COMT to each other, their intracellular location, and their functional significance.  相似文献   

11.
Sera from rabbits bearing tumors induced by avian sarcoma virus (ASV) were ussed to immunopecipitate virus-specific proteins from extracts of chicken, hamster, and field vole cells transformed by ASV. Two virus-specific proteins having molecular weights of 76,000 and 60,000 were found in all cell lines examined. The 76,000-molecular-weight protein, Pr76, is the precursor to the internal core proteins of ASV. The 60,000-molecular-weight (60K) transformation-specific antigen from each cell line was subjected to peptide analysis, using chymotrypsin and Staphylococcus aureus V8 protease. The resulting peptide maps of the 60K protein from the different ASV-infected cell types were similar for each enzyme, strongly suggesting that the 60K protein is virus coded. Two-dimensional analysis of chymotryptic peptides from Pr76 and 60K reveals that 60K is not related to the gs antigen precursor. Radiolabeling of ASV-transformed cells with inorganic phosphate revealed that 60K is phosphorylated in vivo. The 60K proteins isolated from both ASV-transformed chicken and field vole cells were found to contain one tryptic phosphopeptide. The tryptic phosphopeptides of 60K from both cell lines migrated identically upon two-dimensional peptide analyses, and their migration differed from that of the principal phosphopeptide of Pr76.  相似文献   

12.
More than 90% of rapidly-labelled nuclear RNA was associated with a nuclear matrix prepared from mouse leukemia L5178Y cells. The binding was not affected with up to 4 M NaCl; however, these RNAs were released from the nuclear matrix by treatment with a low ionic strength buffer (5 mM Tris-HCl buffer, pH 7.5, containing 1 mM ATP, 1 mM dithiothreitol, 0.2 mM ethylenediaminetetraacetic acid (EDTA) and 0.4 mM calcium chloride), without destruction of the sphere of the nuclear matrix. Actin filaments in the nuclear matrix were depolymerized with this buffer accompanied with rapidly-labelled RNAs. When the depolymerization was inhibited by slight modifications of the low ionic strength buffer (replacement of ATP by the same concentration of GTP; replacement of calcium ion by the same concentration of magnesium ion; addition of 20 micrograms/ml of phalloidine, which is a specific inhibitor of actin depolymerization), the release of rapidly-labelled RNAs from the nuclear matrix was also inhibited. The complex containing rapidly-labelled RNAs and matrix proteins was solubilized by a sonication from the nuclear matrix, and subjected to cesium chloride equilibrium centrifugation. Rapidly-labelled RNAs were concentrated on the bottom of the gradient accompanied with a small number of proteins (68K, 60K, 43K and 40K). The 43K protein was identified as actin by immunoblotting. By RNase digestion before equilibrium centrifugation, actin in the bottom fractions disappeared. These results suggest that rapidly-labelled RNAs anchor on the actin filaments in the nuclear matrix.  相似文献   

13.
Calmodulin-Binding Proteins in Chromaffin Cell Plasma Membranes   总被引:2,自引:1,他引:1  
Abstract: Calmodulin-binding proteins present in chromaffin cell plasma membranes were isolated and directly compared with calmodulin-binding proteins present in chromaffin granule membranes. Chromaffin cell plasma membranes were prepared using Cytodex 1 microcarriers. Marker enzyme studies on this preparation showed a nine- to 10–fold plasma membrane enrichment over cell homogenates and a low contamination of these plasma membranes by subcellular organelles. Plasma membranes prepared in this manner were solubilized with Triton X-100 and applied to a calmodulin-affinity column in the presence of calcium. Several major calmodulin-binding proteins ( 240, 105 , and 65 kilodaltons) were eluted by an EGTA-containing buffer. 125I-Calmodulin overlay experiments on nitrocellulose sheets containing both chromaffin plasma and granule membranes showed that these two membranes have several calmodulin-binding proteins in common ( 65, 60, 53 , and 50 kilodaltons), as well as unique calmodulin-binding proteins (34 kilodaltons in granule membranes and 240 and 160 kilodaltons in plasma membranes). The 65–kilodalton calmodulin-binding protein present in both membrane types was shown to consist of two isoforms (pI 6.0 and 6.2) by two-dimensional gel electrophoresis. Previous experiments from our laboratory, using two monoclonal antibodies (mAb 30 and mAb 48) specific for a rat brain synaptic vesicle membrane protein (p65), showed that the monoclonal antibodies reacted with a 65–kilodalton calmodulin-binding protein present in at least three neurosecretory vesicles (chromaffin granules, neurohypophyseal granules, and rat brain synaptic vesicles). When these monoclonal antibodies were tested on chromaffin cell plasma membranes and calmodulin-binding proteins isolated from these membranes, they recognized a 65–kilodalton protein. These results indicate that an immunologically identical calmodulin-binding protein is expressed in both chromaffin granule membranes (as well as other secretory vesicle membranes) and chromaffin cell plasma membranes, thus suggesting a possible role for this protein in granule/plasma membrane interaction.  相似文献   

14.
The protein composition of the particulate fraction of dissociated foetal rat cerebral cells during maturation in culture was investigated. SDS polyacrylamide gel electrophoresis showed a general decrease in the histonal components and significant changes in composition of a group of polypeptides with molecular weights ranging from 42 to 60 K. Two of these polypeptides coelectrophoresed with tubulin and actin whereas a 48 K polypeptide comigrated with the major component of the Wolfgram myelin protein. Its relative quantity appeared to approach a plateau after 8 days in culture. The myelin basic and proteolipid proteins were below detection levels in cultured cells at any time point investigated. A group of polypeptides with estimated molecular weights of 47, 51 and 52 K possibly representing synaptic proteins increased with time in culture. The appearance of a prominent band (60 K) in brain cultures and in other cells of divergent origin was demonstrated. This protein may be related to the process of cell adaptation to culture conditions. The developmental changes in the protein profile are discussed in the context of an in vitro myelinogenesis and synaptogenesis and compared with whole brain particulate and subcellular fractions.  相似文献   

15.
The Ca2+/calmodulin (CaM)-dependent protein kinase associated with rat cerebral synaptic junction (SJ) was characterized, using the SJ fraction as the enzyme preparation, to clarify the functional significance of the enzyme in situ. The protein kinase was greatly activated in the presence of micromolar concentrations of both Ca2+ and calmodulin (EC50 for Ca2+, 1.0 microM; that for CaM, 100 nM). The Km for ATP was 150 microM. SJ proteins were phosphorylated without a lag time, and the phosphorylation reached its maximum within 2-10 min at 25 degrees C. The endogenous substrates consisted of four major (160K, 120K, 60K, and 51K Mr) and 10 minor proteins. Compared with the endogenous substrate phosphorylation, the phosphorylation of exogenously added proteins (myosin light chains from chicken muscle, casein, arginine-rich histone, microtubule-associated protein-2, tau-protein, and tubulin) was weak, although they are expected to be good substrates for the soluble form of the Ca2+/CaM-dependent protein kinase. Autophosphorylation of the enzyme in SJ inhibited its activity and did not alter the subcellular distribution of the enzyme.  相似文献   

16.
We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3–16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3–16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis.  相似文献   

17.
R H Lee  B M Brown  R N Lolley 《Biochemistry》1984,23(9):1972-1977
Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation of a photoreceptor-specific phosphodiesterase and a rapid reduction in guanosine cyclic 3',5'-phosphate concentration, phosphorylation of the 33K protein may be modulated by light in situ. In order to test this possibility, dark-adapted rat retinas were incubated for 30 min in the dark in phosphate-free Kreb's buffer containing [32P]orthophosphate. Following incubation, rod outer segments were detached by shaking, and the 32P-labeled rod outer segment proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and quantitated by densitometric scanning. The incorporation of radioactivity (32P) into the 33K protein was higher than into any other rod outer segment protein, and the amount of 32P-labeled 33K protein in the detached rod outer segments remained unchanged during 10 additional min of darkness. The addition of isobutylmethylxanthine to the incubation medium enhanced the incorporation of 32P into 33K protein to about 400% of the original level. Exposure of freshly detached rod outer segments to room light for 90 s decreased the amount of labeled 33K protein to 45% of its original level. The dephosphorylation of labeled 33K protein continued, reaching 12% of the original dark value 10 min after the previously illuminated sample was returned to darkness. Light initiated the phosphorylation of rhodopsin, and rhodopsin phosphorylation continued during the postillumination period of darkness.  相似文献   

18.
A simple method for detection of DNA-binding proteins is offered. These proteins can be revealed, following their electrophoretic separation in sodium dodecyl sulfate (SDS)-polyacrylamide gel containing labeled DNA, by washing the gel in buffer to remove SDS and to allow protein renaturation. Protein-free DNA is washed out, remaining in the DNA-binding proteins that restored their original characteristic. After autoradiography these proteins are seen as black bands (by one-dimensional gel electrophoresis) or spots (by two-dimensional gel electrophoresis) on a grey background. High sensitivity of the method is shown by using protein fractions of rat liver and a standard method.  相似文献   

19.
More than 60% of brain chondroitin sulfate proteoglycans were extracted from 10-day-old rat brains by homogenization in ice-cold phosphate-buffered saline containing protease inhibitors. Although the soluble proteoglycan preparation was a mixture of chondroitin sulfate proteoglycans with a different hydrodynamic size as well as a different molecular density, each subfraction of the proteoglycans contained chondroitin sulfate side chains with virtually identical molecular weight (approximately 15,000) and chondroitin sulfate disaccharide composition (high content of 4-sulfate unit). Digestion of the purified proteoglycan preparation with protease-free chondroitinase ABC produced five core proteins with Mr = 250,000 (designated as 250K protein), 220,000 (220K), 150,000 (150K), 130,000 (130K), and 93,000 (93K). All these core proteins were obtained from chondroitin sulfate proteoglycan preparations extracted from various regions of the brain, but their composition varied among different brain regions. Analysis for amino acid composition of these core proteins and two-dimensional mapping of their proteolytic peptides revealed that three major core proteins (250K, 220K, and 150K proteins) were structurally different. These observations indicate that at least three distinct types of chondroitin sulfate proteoglycan occur in the developing rat brain.  相似文献   

20.
The cell-free synthesis of three major proteins from virion RNA of nondefective Rous sarcoma virus (RSV), but not from RNA of transformation-defective deletion mutants, has been observed. The apparent molecular weights of these transformation-specific proteins are approximately 60,000 (60K), 25K, and 17K. Tryptic maps of methionine-containing peptides revealed the 17K, 25K, and 60K proteins to be overlapping in sequence. However, only partial homology was observed between the 17K, 25K and 60K proteins synthesized from Schmidt-Ruppin strain, subgroup D, RSV RNA and those synthesized from Prague strain, subgroup B, RSV, RNA. About half of the methionine peptides in the Schmidt-Ruppin strain, subgroup D, 60K protein were shared with the Prague strain, subgroup D, 60K protein, and the rest were distinct to each. The virion RNAs coding for the 60K, 25K, and 17K proteins were found to be polyadenylated and to sediment with maximal mRNA activity at about 23, 19 to 20, and 18S, respectively. In addition, transformation-specific proteins with molecular weights of 39K and 33K were observed by in vitro synthesis. These proteins are also related to the 60K, 25K, and 17K proteins and were synthesized from polyadenylated RSV RNA of approximately 21 to 22S. RNase T1-resistant oligonucleotides were analyzed in parallel, and the src-specific oligonucleotides were found to be first present in equimolar amounts in those gradient fractions sedimenting at 21 to 22S. Our data suggest that synthesis of the 60K protein is initiated near the 5' terminus of the src gene, whereas the 39K, 33K, 25K, and 17K proteins are initiated internally in the src gene. All of these proteins appear to be initiated independently, but they may have a common termination site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号