首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth, cadmium accumulation and potassium and calcium status were studied in two halophytes from Aizoaceae family: Sesuvium portulacastrum and Mesembryanthemum crystallinum. After multiplication, the seedlings were cultivated on nutrient solution supplemented with NaCl (100mM) and CdCl2 (0, 50, 100, 200 and 300 microM). After 1 month of treatment, plants were harvested and the dry weight, as well as the Cd, K and Ca concentrations in tissues were determined. Results showed that S. portulacastrum, a perennial halophyte with slow growth, is significantly more tolerant to Cd than M. crystallinum, an annual plant. Cd severely inhibited Mesembryanthemum growth even at the lowest Cd concentration in culture medium (50 microM), and did not modify significantly that of Sesuvium. For both halophytes, Cd accumulation was significantly higher in the roots than in the shoots. However, Cd concentration reached 350-700 microg g(-1) DM in the shoots, values characteristic of Cd hyperaccumulator plants. The addition of Cd in the culture medium led to a disturbance of Ca and especially K nutrition, suggesting the possibility to improve plant growth and Cd phytoextraction of both halophytes by increasing nutrient availability in the culture medium.  相似文献   

2.
We studied cadmium toxicity in murine hepatocytes in vitro. Cadmium effects on intracellular free Ca(2+) concentration ([Ca(2+)](i)) were assayed, using a laser scanning confocal microscope with a fluorescent probe, Fluo-3/AM. The results showed that administration of cadmium chloride (CdCl(2), 5, 10, 25 microM) resulted in a dose-dependent decrease of hepatocyte viability and an elevated aspartate aminotransferase (AST) activity in the culture medium (p<0.05 for 25 microM CdCl(2) vs. control). Significant increases of lactate dehydrogenase (LDH) activities in 10 and 25 microM CdC1(2)-exposed groups were observed (p<0.05 and p<0.01, respectively). A greatly decreased albumin content and a more malondialdehyde (MDA) formation also occurred after CdC1(2) treatment. The Ca(2+) concentrations in the culture medium of CdCl(2)-exposed hepatocytes were significantly decreased, while [Ca(2+)](i) appeared to be significantly elevated (p<0.05 or p<0.01 vs. control). We found that in Ca(2+)-containing hydroxyethyl piperazine ethanesulfonic acid-buffered salt solution (HBSS) only, CdCl(2) elicited [Ca(2+)](i) increases, which comprised an initially slow ascent and a strong elevated phase. However, in Ca(2+)-containing HBSS with addition of 2-aminoethoxydiphenyl borane (2-APB), CdCl(2) caused a mild [Ca(2+)](i) elevation in the absence of an initial rise phase. Removal of extracellular Ca(2+) showed that CdCl(2) induced an initially slow [Ca(2+)](i) rise alone without being followed by a markedly elevated phase, but in a Ca(2+)-free HBSS with addition of 2-APB, CdCl(2) failed to elicit the [Ca(2+)](i) elevation. These results suggest that abnormal Ca(2+) homeostasis due to cadmium may be an important mechanism of the development of the toxic effect in murine hepatocytes. [Ca(2+)](i) elevation in acutely cadmium-exposed hepatocytes is closely related to the extracellular Ca(2+) entry and an excessive release of Ca(2+) from intracellular stores.  相似文献   

3.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

4.
The calcium content of the growth medium has been shown to influence the growth and differentiation of primary epithelial cells in culture. The goal of the present study was to determine if growth medium calcium concentration could influence the susceptibility to metal toxicity and metallothionein gene expression of an immortalized human prostate-derived epithelial cell line (RWPE-1). The RWPE-1 cell line was grown in medium containing either 0.1 or 1.4 mM calcium. Confluent cells were exposed to either Zn+2 (50, 100, or 150 μM) or Cd+2 (3, 6, or 12 μM) for 13 days, and cell toxicity and MT gene expression were determined along the time course of exposure. It was demonstrated that the calcium content of the growth medium had a marked influence on Zn+2 toxicity and a lesser but significant effect on Cd+2 toxicity to the RWPE-1 cells. Calcium concentration of the growth medium was also shown to alter the accumulation of MT-1/2 protein and MT-1E, MT-1X, and MT-2A mRNAs. It was shown that MT-1/2 protein was markedly increased for metal-exposed cells grown in medium containing 0.1 mM calcium; however, the increased expression did not cause an increase in the resistance of the cells to Zn+2 or Cd+2 exposure. These observations show that growth medium calcium concentration can influence metal toxicity and the pattern of expression of the MT mRNAs and protein for RWPE-1 cells. The results suggest that caution should be exercised when comparing toxicological responses between cell lines that may be grown in growth formulations differing in calcium concentration.  相似文献   

5.
Effect of calcium ion uptake on Candida albicans morphology   总被引:1,自引:0,他引:1  
In liquid culture using a synthetic medium, added magnesium but not calcium was required for exponential growth of Candida albicans yeast cells. However, medium without added divalent cations supported 2-3 generations of yeast growth or germ tube induction. The addition of calcium ions (1.0 mM) at any stage during the induction of germ tube formation caused reversion to a yeast mode of growth, in contrast to the effect of zinc and cobalt ions which were toxic to all growth. Inhibition of germ tube formation by calcium was not observed in the presence of either magnesium (10 microM) or manganese (100 microM). The presence of either of these ions caused inhibition of 45Ca uptake in yeast cultures. We conclude that unrestricted calcium uptake resulted in the specific inhibition of C. albicans mycelial growth, indicating a critical role for calcium in the regulation of C. albicans morphogenesis.  相似文献   

6.
Metallothioneins and resistance to cadmium poisoning in Drosophila cells   总被引:5,自引:0,他引:5  
Toxicity of cadmium on Drosophila cell lines has been studied. Maximal tolerance for cadmium chloride is 10 microM. Metallothioneins are induced in Drosophila cells following cadmium addition. A stable cadmium resistant cell line (Cd R200) has been selected starting from the haploid D clone. The Cd R200 cells are diploid and display metallothionein levels 22 times higher than cells of the original line fully induced with cadmium. The 200 microM CdCl2 tolerance upper limit in Cd R200 line is overcome if L-cysteine is supplemented to the medium. It is thus possible, in the presence of 5 mM L-cysteine, to select cells able to resist 800 microM CdCl2. These cells produce 4 times more metallothioneins than Cd R200 cells.  相似文献   

7.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

8.
The effect of some milk components on the cellular uptake of cadmium has been studied using a human intestinal cell line (Caco-2). Cadmium uptake by Caco-2 cells increased with the concentration of this metal in the culture medium, in a saturable way. These cells were exposed to different concentrations of cadmium and the synthesis of metallothionein was studied by a cadmium-saturation method. The levels of metallothionein increased with the cadmium concentration in the medium up to 20 μM of metal. Supplementation of the culture medium with 10% bovine milk caused a 25% decrease in the uptake of cadmium with respect to that internalized by the cells maintained in the culture medium alone. However, the uptake of cadmium from the medium supplemented with 10% human milk was similar to that with serum-free medium. β-Lactoglobulin interacted with cadmium when studied by equilibrium dialysis, showing a stoichiometric binding constant of 5 × 104l/mol. Interaction of lactoferrin with cadmium, however, was negligible. When Caco-2 cells were incubated in culture medium containing lactoferrin, cadmium uptake decreased with respect to that observed incubating the cells in a medium containing β-lactoglobulin or in the free-protein medium. The inhibitory effect of lactoferrin on the uptake of cadmium might be due to a reduction of the cell surface charge, through its binding to the membrane.  相似文献   

9.
Cadmium chloride (CdCl2) added to human lymphocyte culture inhibits the proliferative response induced by phytohaemagglutinin (PHA), pokeweed mitogen and allogenic lymphocytes in mixed lymphocyte reaction. Minimally effective concentrations of CdCl2 were 3.3, 1.6 and 1.6 microM, respectively. The inhibition was greatest when CdCl2 was added at initiation of cultures and declined if the addition of CdCl2 was postponed. The presence of CdCl2, regardless of the presence of PHA during the first 24 h of incubation suppressed the proliferative response to subsequent stimulation with PHA, indicating that cadmium affects an early step of blastogenic transformation.  相似文献   

10.
Stress proteins have been proposed as markers of toxicity. This study investigated the sensitivity and specificity of stress proteins as markers of toxicity in primary hepatocyte cultures following exposure to two compounds, hydrazine and cadmium chloride (CdCl) . 2 Hepatocytes were exposed to increasing concentrations of hydrazine and CdCl for 2 h 2 and levels of the heat shock proteins HSP72/3, and HSP25 measured. In addition to this, ATP and GSH levels and LDH leakage were measured over the following 8 h. The results show that increasing concentrations of hydrazine caused dose-dependent decreases in ATP and GSH levels over 8 h. There was no change in the levels of HSP25 or HSP72/3 over that period. CdCl was found to significantly induce HSP72/3 at a concentration of 2 5 M when no other biochemical parameter was altered, levels were also elevated following administration of 10 M CdCl but ATP levels were found to be decreased at this 2 concentration. Levels of HSP25 were not increased following CdCl exposure at any 2 concentration. Higher concentrations of CdCl produced significant increases in LDH 2 leakage and depletion of intracellular levels of ATP and GSH. In addition to this levels of HSP25 and HSP72/3 were reduced to zero following administration of high concentrations of CdCl. In this study hydrazine does not induce either of the stress 2 proteins studied here whereas CdCl exposure causes the induction of HSP72/3 but not 2 HSP25. However it was determined that during the culture of primary hepatocytes basal levels of HSP25 and HSP72/3 were significantly increased when compared with levels determined in vivo. The results suggest that stress proteins may have the potential to be sensitive markers of toxicity in primary hepatocytes; however, the induction of individual stress proteins appears to be dependent upon the compound used. The apparent noninduction of the stress response by hydrazine and minor induction by CdCl might be 2 explained by the fact that whilst in culture the hepatocytes are under a continuous state of stress and therefore may not be able to elicit a full stress response following a chemical insult.  相似文献   

11.
12.
T Ochi  M Mogi  M Watanabe  M Ohsawa 《Mutation research》1984,137(2-3):103-109
Inducibility of chromosomal aberrations and cytotoxicity in cultured Chinese hamster cells by cadmium chloride (CdCl2) was investigated under 3 different treatment conditions: (i) 2-h treatment in MEM medium supplemented with 10% fetal bovine serum (MEM + 10% FBS) or (ii) in HEPES-buffered Hanks' solution (HEPES-Hanks), and (iii) continuous treatment for 24 h in MEM + 10% FBS. Two-h treatment with CdCl2 in HEPES-Hanks or continuous treatment for 24 h in MEM + 10% FBS was respectively 2 or 3 times more cytotoxic than 2-h treatment with the metal in MEM + 10% FBS. Continuous treatment for 24 h with a CdCl2 concentration in excess of 5 X 10(-6) M was too toxic to the cells to allow chromosomal analysis, and moreover, only a slight increase in incidence of chromosomal aberrations was observed at a concentration of 5 X 10(-6) M CdCl2. In contrast, a marked and concentration-dependent increase in incidence of chromosomal aberrations was observed after post-treatment culture for 22 h follows 2-h treatment with 1 X 10(-6) M to 5 X 10(-5) M of CdCl2 in both MEM + 10% FBS and HEPES-Hanks. Two-h treatment with cadmium in HEPES-Hanks was approximately 3 times more potent for the induction of chromosomal aberrations than that in MEM + 10% FBS. Types of aberrations induced by CdCl2 mainly consisted of chromatid gaps and breaks, although a few exchanges, dicentrics and fragmentations were observed at high concentrations of cadmium. Increase in incidence of tetraploidy was also observed with a concentration dependency after 2-h treatment with CdCl2. Potency of CdCl2 to induce chromosomal aberrations after 2-h exposure was comparable to that of benzo[a]pyrene activated with S9 at equitoxic concentrations. Two-h treatment with cadmium markedly inhibited incorporation of [3H]thymidine, even at concentrations at which incorporation of [3H]uridine or [3H]leucine was less inhibited. However, the inhibition of [3H]thymidine incorporation by cadmium was reversible and the incorporation restored to the control level during 2-6 h of post-treatment incubation. These findings suggest that restoration of DNA synthesis after cadmium exposure is required for the efficient detection of chromosomal aberrations induced by the metal.  相似文献   

13.
Stress proteins have been proposed as markers of toxicity. This study investigated the sensitivity and specificity of stress proteins as markers of toxicity in primary hepatocyte cultures following exposure to two compounds, hydrazine and cadmium chloride (CdCl ). 2 Hepatocytes were exposed to increasing concentrations of hydrazine and CdCl for 2 h 2 and levels of the heat shock proteins HSP72/3, and HSP25 measured. In addition to this, ATP and GSH levels and LDH leakage were measured over the following 8 h. The results show that increasing concentrations of hydrazine caused dose-dependent decreases in ATP and GSH levels over 8 h. There was no change in the levels of HSP25 or HSP72/3 over that period. CdCl was found to significantly induce HSP72/3 at a concentration of 2 5 M when no other biochemical parameter was altered, levels were also elevated following administration of 10 M CdCl but ATP levels were found to be decreased at this 2 concentration. Levels of HSP25 were not increased following CdCl exposure at any 2 concentration. Higher concentrations of CdCl produced significant increases in LDH 2 leakage and depletion of intracellular levels of ATP and GSH. In addition to this levels of HSP25 and HSP72/3 were reduced to zero following administration of high concentrations of CdCl . In this study hydrazine does not induce either of the stress 2 proteins studied here whereas CdCl exposure causes the induction of HSP72/3 but not 2 HSP25. However it was determined that during the culture of primary hepatocytes basal levels of HSP25 and HSP72/3 were significantly increased when compared with levels determined in vivo . The results suggest that stress proteins may have the potential to be sensitive markers of toxicity in primary hepatocytes; however, the induction of individual stress proteins appears to be dependent upon the compound used. The apparent noninduction of the stress response by hydrazine and minor induction by CdCl might be 2 explained by the fact that whilst in culture the hepatocytes are under a continuous state of stress and therefore may not be able to elicit a full stress response following a chemical insult.  相似文献   

14.
The role of calcium ions during mitosis   总被引:25,自引:2,他引:23  
Calcium-containing solutions were microinjected into dividing PtK1 cells to assess the effect of calcium ion concentration on the morphology and physiology of the mitotic spindle. Solutions containing 50 microM or more CaCl2 are immediately and irreversibly toxic to PtK1 cells. Those containing 5-10 microM CaCl2 cause reversible reduction in spindle birefringence followed by normal anaphase and cytokinesis. Microinjection of 5 microM or less CaCl2 into anaphase PtK1 cells has no detectable effect on the rate or extent of chromosome movement. Metaphase cells tend to enter anaphase 4-5 min after injection with 1-10 microM CaCl2, compared with an average of 16 min after injection with calcium-free buffer. Reducing the intracellular calcium concentration by injection of EGTA-CaCl2 buffers increases the lag between injection and anaphase to 20 min or more. Microinjection of calcium solutions does not promote precocious chromatid separation in nocodazole-arrested metaphase cells, indicating that the increase in calcium concentration does not induce centromere separation directly. An increase in the concentration of free calcium ions during metaphase appears to stimulate the onset of anaphase. Such an increase, regulated by the cell itself, may contribute to the initiation of chromosome separation in mammalian cells.  相似文献   

15.
The ability of cadmium-bound metallothionein(Cd-MT) to induce apoptosis was investigated in vivo and in vitro. Administration of purified Cd-MT (0.15 mg MT bound Cd per kg body weight) to the rat induces DNA fragmentation, a biochemical characteristic of apoptosis in the kidney at 16 h, which was detectable by ethidium bromide staining on an agarose gel. It was still detected 24 h after administration. Induction of apoptosis by Cd-MT was specific to kidney; it was not observed in cerebrum, cerebellum, heart, lung, liver, testis, dorsolateral prostate, and ventral prostate. In contrast, addition of Cd-MT (0.01-100 microM) to the cultured porcine kidney LLC-PK1 cells failed to induce apoptosis under the condition where cadmium chloride (10 microM) did. There was no additivity of induction of apoptosis by CdCl2 (10 microM) in the presence of Cd-MT (0.01-100 microM). To examine the effect of intracellular MT on cadmium-induced apoptosis in cultured cells, new cell lines were established, which constitutively produce MT, being termed as Cd(r)-LLC-PK1 cells since Cd-MT exogenously added had much less permeability to the cultured cells. Followed by exposure of wild-type LLC-PK1 cells to 50 microM CdCl2 for 24 h, the surviving cells(Cd(r)-LLC-PK1 cells) induce MT at the level of 1.9 microg/2 x 10(6) cells. In Cd(r)-LLC-PK1 cells, 10 microM CdCl2 failed to induce apoptosis, but 60 microM CdCl2 could exert the apoptotic response, indicating that intracellular MT which was induced by CdCl2 did not facilitate CdCl2-elicited apoptosis. Furthermore, chromatin in rat kidneys was condensed by Cd-MT, but not that in LLC-PK1 cells. Thus, Cd-MT induces apoptosis in rat kidneys, but not in the cultured renal cells, suggesting that the ionic form of cadmium was required for programmed cell death.  相似文献   

16.
AIMS: The objective of the present study was to investigate the optimal culture requirements for mycelial growth and exopolysaccharide production by Cordyceps jiangxiensis JXPJ 0109 in submerged culture. METHODS AND RESULTS: The effects of medium ingredients (i.e. carbon and nitrogen sources, and growth factor) and other culture requirements (i.e. initial pH, temperature, etc.) on the production of mycelia and exopolysaccharide were observed using a one-factor-at-a-time method. More suitable culture requirements for mycelial growth and exopolysaccharide production were proved to be maltose, glycerol, tryptone, soya bean steep powder, yeast extract, medium capacity 200 ml in a 500-ml flask, agitation rate 180 rev min(-1), seed age 4-8 days, inoculum size 2.5-7.5% (v/v), etc. The optimal temperatures and initial pHs for mycelial growth and exopolysaccharide production were at 26 degrees C and pH 5 and at 28 degrees C and pH 7, respectively, and corresponding optimal culture age were observed to be 8 and 10 days respectively. According to the primary results of the one-factor-at-a-time experiments, the optimal medium for the mycelial growth and exopolysaccharide production were obtained using an orthogonal layout method to optimize further. Herein the effects of medium ingredients on the mycelial growth of C. jiangxiensis JXPJ 0109 were in the order of yeast extract > tryptone > maltose > CaCl2 > glycerol > MgSO4 > KH2PO4 and the optimal concentration of each composition was 15 g maltose (food-grade), 10 g glycerol, 10 g tryptone, 10 g yeast extract, 1 g KH2PO4, 0.2 g MgSO4, and 0.5 g CaCl2 in 1 l of distilled water, while the order of effects of those components on exopolysaccharide production was yeast extract > maltose > tryptone > glycerol > KH2PO4 > CaCl2 > MgSO4, corresponding to the optimal concentration of medium was as follows: 20 g maltose (food-grade), 8 g glycerol, 5 g tryptone, 10 g yeast extract, 1 g KH2PO4, and 0.5 g CaCl2 in 1 l of distilled water. CONCLUSIONS: Under the optimal culture requirements, the maximum exopolysaccharide production reached 3.5 g l(-1) after 10 days of fermentation, while the maximum production of mycelial growth achieved 14.5 g l(-1) after 8 days of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the submerged culture requirements for mycelial growth and exopolysaccharide in C. jiangxiensis, and this two-step optimization strategy in this study can be widely applied to other microbial fermentation processes.  相似文献   

17.
The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.  相似文献   

18.
镉诱发肝细胞毒性和胞内Ca2+变化及硒的保护作用研究   总被引:5,自引:0,他引:5  
本文通过研究镉诱发鼠肝细胞毒性和胞内游离Ca2 变化及硒的干预效应,探讨镉致肝细胞损伤机制及硒的保护作用。分离培养新生鼠原代肝细胞,随机分为正常对照组、4个5、25、100和250μmol/LCdCl2组、2个10和20μmol/LNa2SeO3组和8个用10和20μmol/LNa2SeO3分别与5、25、100和250μmol/LCdCl2联合作用组。在实验后第12h检测肝细胞存活及其MDA含量和培养液中LDH活性,激光共聚焦显微镜分析肝细胞内游离Ca2 水平([Ca2 ]i)。结果显示,镉处理的肝细胞存活随镉浓度增加明显下降,硒处理组与对照组差异不明显;硒提高或明显提高镉染毒肝细胞存活。肝细胞培养上清液LDH活性随镉浓度增加而逐渐升高,且100和250μmol/LCdCl2组显著高于对照组,而硒处理组未见明显变化;给予硒的25、100和250μmol/LCdCl2处理组LDH活性下降或明显下降。不同浓度镉均诱发肝细胞MDA含量显著升高,而硒处理组未见类似表现;10和20μmol/LNa2SeO3抑制或显著地降低25、100和250μmol/LCdCl2诱发的MDA的生成。经镉处理的肝细胞[Ca2 ]i荧光强度明显高于对照组,且随镉浓度的增加而上升,而给予硒的肝细胞[Ca2 ]i荧光强度未见升高,与对照组相近;加入硒的镉染毒肝细胞[Ca2 ]i均比各对应浓度的镉处理组有较大幅度地下降,其中给予硒的25μmol/LCdCl2处理组差异显著,且接近对照组的水平。结果提示,镉诱发肝细胞毒性和损伤以及肝细胞[Ca2 ]i升高;硒可能通过干预肝损伤细胞脂质过氧化反应,改善和保护肝细胞[Ca2 ]i稳态而减轻镉诱发的细胞毒性和损伤过程。  相似文献   

19.
以粟酒裂殖酵母(Schizosaccharomyces pombe)为研究材料,研究了Ca~(2+)在细胞周期时相中的作用。当外源Ca~(2+)浓度在0.5-20 mmol/L范围内,随Ca~(2+)浓度增加,细胞增殖速度加快,延滞期逐渐缩短。但SD-Ca(CaCl2省略)并不能终止Sch. pombe的细胞周期。采用缺氮对群体细胞进行同步化,并以EGTA 螯合培养介质中低浓度的Ca~(2+),Sch. pombe 细胞增殖被完全抑制,细胞流式法测定结果表明:细胞周期被终止在G1期。分析认为Ca~(2+) 对Sch. pombe 细胞增殖是必不可少的,外源Ca~(2+)在G1期向S期转化过程中起着关键性的作用。  相似文献   

20.
Effects of cadmium treatment on human platelets were studied with respect to uptake and release of 5-[3H]hydroxytryptamine (5-HT). The uptake of 5-[3H]HT in the presence of varying concentrations of CdCl2 (0.001-10 mM) was inhibited significantly with respect to control platelets and the inhibition was maximum at 1 mM CdCl2 concentration. From studies on the kinetics of 5-[3H]HT uptake a higher Km and significantly lower Vmax for CdCl2-treated platelets were observed. CdCl2 stimulated spontaneous release but inhibited thrombin-induced release of 5-[3H]HT. Spontaneous release of 5-[3H]HT induced by CdCl2 was not significantly altered in the presence of externally available CaCl2 (1 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号