首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proline analog cis-4-hydroxy-L-proline (CHP) was previously shown to inhibit both Schwann cell (SC) differentiation and extracellular matrix (ECM) formation in cultures of rat SCs and dorsal root ganglion neurons. We confirmed that CHP inhibits basal lamina formation by immunofluorescence with antibodies to laminin, type IV collagen, and heparan sulfate proteoglycan. In order to test the hypothesis that CHP inhibits SC differentiation by specifically inhibiting the secretion of collagen, cultures grown in the presence or absence of CHP were metabolically labeled with [3H]leucine and the media were analyzed for relative amounts of (a) collagenous and noncollagenous proteins by assay with bacterial collagenase and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), or (b) triple-helical collagen by pepsin digestion followed by SDS-PAGE. The results indicate that although CHP inhibited the accumulation of secreted collagen in the culture medium and disrupted collagen triple-helix formation, it also significantly inhibited the accumulation of secreted noncollagenous proteins in the medium. CHP had no significant effect on either total protein synthesis (medium plus cell layer) or cell number. We conclude that CHP does not act as a specific inhibitor of collagen secretion in this system, and thus data from these experiments cannot be used to relate SC collagen production to other aspects of SC differentiation. We discuss the evidence for and against specificity of CHP action in other systems.  相似文献   

2.
E D Adamson  S J Gaunt  C F Graham 《Cell》1979,17(3):469-476
A cloned line of undifferentiated teratocarcinoma cells (OC15S1) was either maintained as a homogeneous embryonal carcinoma (EC) cell population or was cultured under conditions where the cells differentiated into endoderm-like (END) cells. In this study we examine the synthesis of collagen in both EC and END cells. Cell cultures were incubated with tritiated proline and lysine, and the radioactive collagen secreted into the medium was extracted and purified or immunoprecipitated by antibodies to type IV collagen (Adamson and Ayers, 1979). Radioactive collagens were identified by electrophoretic mobility, by sensitivity to collagenase and to reduction, by insensitivity to pepsin, by cyanogen bromide peptides, and by aminoacid analyses of 3-hydroxyproline, 4-hydroxyproline and proline. OC15S1 EC cells were found to synthesize several collagenous polypeptides, of which 60–70% of the radioactivity was like that of basement membrane (type IV) collagen. Type I-like collagen was the main collagenous product of END cells, but a minor product of EC cells. We concluded that type IV collagen synthesis was suppressed during the differentiation of EC cells to END, while type I-like synthesis was increased. Similarly, other EC cell lines produced mainly type IV-like collagen polypeptides (PC13, F9, PSA1), and following the formation of END cells, two lines produced mainly type I-like collagen polypeptides (PC13, C145b). The type of endoderm formed on embryoid bodies, however, presents an alternate route of differentiation, since immunoperoxidase tests showed that it was synthesizing significant amounts of type IV collagen. We discuss the significance of these findings in relation to a similar change which occurs during normal development.  相似文献   

3.
The availability of cultures of normal cells (NCs) and Schwann cells (SCs) with and without fibroblasts has allowed us to investigate the sources of endoneurial and perineurial constituents of peripheral nerve. NCs cultured alone, devoid of ensheathment but healthy in appearance, lack basal lamina and extracellular fibrils. In contrast, when SCs accompany NCs, basal lamina and extracellular fibrils are consistently visible around SCs in outgrowth areas formed de novo in culture. These fibrils average 18 nm in diameter, exhibit a repeating banding pattern, and are trypsin-resistant and collagenase-sensitive. Collagen synthesis is also indicated by the incorporation of [14C]proline into peptide-bound hydroxy-proline in NC + SC or SC cultures. That the [14C]hydroxyproline polypeptides formed in NC + SC cultures are collagenous was determined in part by pepsin digestion- ammonium sulfate precipitation-polyacrylamide gel electrophoresis techniques; the 14C-polypeptides migrate to the positions of alpha 1 (I), alpha 2, alpha 1 (III), and alpha B chains of type I, type III, and A-B collagens. Also formed are thin, ruthenium red-preserved strands interconnecting basal laminae. SC ensheathment of axons is similar to that found in the animal; one SC is related to a number of unmyelinated axons or a single myelinated axon. This proclivity to ensheathe and myelinate axons indicates that SC function is not lost during the preparative procedures or after lengthy isolation in culture and provides the most reliable means for SC identification. Perineurial ensheathment and macrophages are lacking in NC + SC culture preparations divested of fibroblasts. We conclude that SCs do not form perineurium or the larger diameter collagen fibrils typical of endoneurium but that in combination with neurons they generate biochemically detectable collagens and morphologically visible basal lamina and thin collagenous fibrils.  相似文献   

4.
Summary When primary cultures of fetal human liver cells established on type I collagen gels were compared to sister cultures developed on tissue culture plastic, the cells in contact with type I collagen secreted albumin at a higher rate than those without contact. The albumin secretion was dependent on the presence of hydrocortisone (HC) in the medium. Also, α-fetoprotein (AFP), of which the level decreased gradually and became undetectable after 6 d regardless of the presence or absence of HC in the cells cultured on plastic, was maintained for longer periods of time by plating the cells on type I collagen gels in the presence of HC. Different secretion rates of albumin and AFP were observed after Day 13 and Day 16, respectively, between cells maintained on type I collagen gels and those on film plastic. The cells secreted larger amounts of both albumin and AFP in plates coated with type IV or I collagens than with fibronectin after Day 10. The cells cultured on type I collagen gels were cuboidal in shape, whereas those on plastic were flattened in cultures with HC. These data indicate that the secretion of human albumin and AFP is facilitated by synergies between HC and collagenous substrata.  相似文献   

5.
Biosynthesis of type IV collagen by cultured rat Schwann cells   总被引:15,自引:10,他引:5       下载免费PDF全文
We have obtained evidence that rat Schwann cells synthesize and secrete type IV procollagen. Metabolic labeling of primary cultures of Schwann cells plus neurons and analysis by SDS PAGE revealed the presence of a closely spaced pair of polypeptides in the medium of these cultures that (a) were susceptible to digestion by purified bacterial collagenase, (b) co-migrated with type IV procollagen secreted by rat parietal endoderm cells, and (c) were specifically immunoprecipitated by antibodies against mouse type IV collagen. Limited pepsin digestion of metabolically labeled medium or cell layers produced a pepsin- resistant fragment characteristic of pro-alpha 1(IV) chains. Removal of neuronal cell bodies from the cultures immediately before labeling did not reduce the amount of type IV procollagen detected in the medium. This indicated that Schwann cells, not neurons, were responsible for synthesis of type IV procollagen. We believe type IV procollagen is a major constituent of the Schwann-cell extracellular matrix based upon (a) its presence in a detergent-insoluble matrix preparation, (b) its presence in the cell layer of the cultures in a state in which it can be removed by brief treatment with bacterial collagenase or trypsin, and (c) positive immunofluorescence of Schwann cell-neuron cultures with anti-type-IV collagen antibodies. Secretion of type IV procollagen was substantially reduced when Schwann cells were maintained in the absence of neurons. This observation may account for the previously reported finding that Schwann cells assemble a basal lamina only when co-cultured with neurons (Bunge, M. B., A. K. Williams, and P. M. Wood, 1982, Dev. Biol., 92:449).  相似文献   

6.
During embryogenesis and the postnatal period, neurons and glia interact in the development and differentiation of specific populations of nerve cells. Both in the peripheral (PNS) and in the central nervous system (CNS), glial cells have been shown in various experimental conditions to constitute a favorable substrate for neural adhesion, neural polarity, shape and axonal extension, while numerous soluble molecules secreted by neurons influence the survival and differentiation of the glial cells themselves. The aim of the present work was to investigate the influence of postnatal Schwann cells (SC) on embryonic serotoninergic (5-HT) neurons of the raphe, in order to study the possible influence of the peripheral glia on the CNS neurons. Cultures of SC from sciatic nerve of postnatal rats and neurons from rat embryonic rhombencephalon were successfully established and cells were immunocytochemically characterized. The number of 5-HT neurons, and the number and length of their branches were quantified in the cultures of 5-HT neurons, in cultures added with Nerve Growth Factor (NGF) and Insulin-like Growth Factor I (IGF-I), in co-cultures with SC and in cultures added with conditioned medium obtained from SC cultures. The results indicated that SC have the capacity to promote the survival and growth of 5-HT neurons in culture, and that this activity is mediated by soluble factors. Although the precise nature and mechanism of action of the growth factor or factors produced by SC in the presence of 5-HT neurons was not identified, our results add more data on the possible activity of the peripheral glia in promoting and enhancing the survival and outgrowth of the CNS neurons.  相似文献   

7.
The recombinant transmembrane protein type XIII collagen is shown to reside on the plasma membrane of insect cells in a 'type II' orientation. Expressions of deletion constructs showed that sequences important for the association of three alpha1(XIII) chains reside in their N- rather than C-terminal portion. In particular, a deletion of residues 63-83 immediately adjacent to the transmembrane domain abolished the formation of disulfide-bonded trimers. The results imply that nucleation of the type XIII collagen triple helix occurs at the N-terminal region and that triple helix formation proceeds from the N- to the C-terminus, in opposite orientation to that of the fibrillar collagens. Interestingly, a sequence homologous to the deleted residues was found at the same plasma membrane-adjacent location in other collagenous transmembrane proteins, suggesting that it may be a conserved association domain. The type XIII collagen was secreted into insect cell medium in low amounts, but this secretion was markedly enhanced when the cytosolic portion was lacking. The cleavage occurred in the non-collagenous NC1 domain after four arginines and was inhibited by a furin protease inhibitor.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

9.
10.
Peripheral nerve lesions are considered the most relevant symptoms of leprosy, a chronic infectious disease caused by Mycobacterium leprae . The strategies employed by M. leprae to infect and multiply inside Schwann cells (SCs), however, remain poorly understood. In this study, it is shown that treatment of SCs with M. leprae significantly decreased cell death induced by serum deprivation. Not displayed by Mycobacterium smegmatis or Mycobacterium bovis BCG , the M. leprae survival effect was both dose dependent and specific . The conditioned medium (CM) of M. leprae -treated cultures was seen to mimic the protective effect of the bacteria, suggesting that soluble factors secreted by SCs in response to M. leprae were involved in cell survival. Indeed, by quantitative RT-PCR and dot blot/ELISA, it was demonstrated that M. leprae induced the expression and secretion of the SC survival factor insulin-like growth factor-I. Finally, the involvement of this hormone in M. leprae -induced SC survival was confirmed in experiments with neutralizing antibodies. Taken together, the results of this study delineate an important strategy for the successful colonization of M. leprae in the nerve based on the survival maintenance of the host cell through induction of IGF-I production.  相似文献   

11.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

12.
Seventeen day chicken embryonic osteoblasts treated over a 30-day period with 1,25(OH)2 D3 showed a 2–10-fold decrease in collagen, osteopontin and osteocalcin protein accumulation, alkaline phosphatase enzyme activity, and mineral deposition. Comparable inhibition in the steady state mRNA levels for α1(I) and α2(I) collagen, osteocalcin, and osteopontin were observed, and the inhibitory action of the hormone was shown to be specific for only the late release populations of cells from sequential enzyme digestions of the chick calvaria. In order to determine whether the continuous hormone treatment blocked osteoblast differentiation, the cells were acutely treated for 24 h with 1,25(OH)2 D3 at culture periods when the cells proliferate (day 5), a culture period when the cells cease further cell division and are increasing in the expression of their differentiated functions (day 17), and a culture period when the cells are encapsulated within a mineralized extracellular matrix (day 30). Inhibition of the expression of collagen, osteocalcin, and osteopontin were observed at days 17 and 30, while no effect could be detected for the 5-day cultures. To further define whether the inhibitory effect was specific for cells expressing their differentiated phenotype, 1,25(OH)2 D3 treatment was initiated at day 17 and continued to day 30 after the cells have established their collagenous matrix. In these experiments further collagenous matrix deposition, mineral deposition, alkaline phosphatase activity, and osteocalcin synthesis were also inhibited after the hormone treatment was initiated. These results, in summary, show that 1,25(OH)2 D3 in primary avian osteoblast cultures derived from 17-day embryonic calvaria inhibits the expression of several genes associated with differentiated osteoblast function and inhibit extracellular matrix mineral deposition.  相似文献   

13.
Choroid plexuses (CP) are involved in multiple functions related to their unique architecture and localization at the interface between the blood and cerebrospinal fluid compartments. These include the release by choroidal epithelial cells (CEC) of biologically active molecules, such as polypeptides, which are distributed globally to the brain. Here, we have used a proteomic approach to get an unbiased overview of the proteins that are secreted by primary cultures enriched in epithelial cells from mice CP. We identified a total of 43 proteins secreted through the classical vesicular pathway in CEC -conditioned medium. They include transport proteins, collagen subunits and other cell matrix proteins, proteases, protease inhibitors and neurotrophic factors. Treating CEC cultures with lipopolysaccharide, increased the secretion of four protein species and induced the release of two additional proteins. Our study also reveals a higher protein secretion capacity of CECs compared with other CP cells or cultured astrocytes. In conclusion, this study provides for the first time the characterization of the major proteins that are secreted by CECs. These proteins may play a critical role in neuronal growth, differentiation and function as well as in brain pathologies.  相似文献   

14.
The preparation, cryopreservation, and culture on type I collagen gels of lactating bovine mammary cells with prolonged milk protein synthesis and secretion in vitro is described. Cryopreserved cells prepared as acinar fragments from either lactating or developing mammary glands attached to the collagen substratum within 24-48 hr after plating in serum and hormone supplemented medium. During continued culture in hormone-supplemented (insulin, cortisol, and prolactin) serum-free medium outgrowth of cells from the attached acinar fragments was observed beginning on day 2, with continued outgrowth to near confluence by day 6. Two morphologically distinct cell types were evident; initial outgrowth was by large polygonal cells that were subsequently overlain by spindle-shaped cells. Cells from both lactating and developing mammary glands sustained substantial milk protein secretion for at least 14 days in culture. Alpha S1-casein synthesis and secretion in cultures of lactating mammary cells was dependent on a critical minimum cell population density, below which alpha S1-casein was not secreted. In contrast, lactoferrin (LF) secretion into the medium increased linearly with the increase in cell population density. Cells cryopreserved up to 16 months secreted LF at levels comparable to fresh cultures of the same cells.  相似文献   

15.
The human chronic myeloid leukemia cell line K562 acquires several megakaryoblastoid features when cultured in the presence of the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We observed strongly increased secretion of several proteins into the culture media of K562 cells within a few hours of TPA treatment. Two of the major secreted polypeptides were identified by immunoprecipitation from media of metabolically labeled cultures as the tissue inhibitor of metalloproteinases (TIMP) and the type 1 plasminogen activator inhibitor (PAI-1). Maximal amounts of PAI-1 mRNA and secretion of PAI-1 polypeptides were observed after 24 hr of TPA treatment and PAI-1 persisted at elevated levels for several days. The induction of PAI-1 mRNA was dependent on de novo protein synthesis. Uninduced and induced cells secreted urokinase plasminogen activator in its single-chain proenzyme form (pro-u-PA), which was cleaved extracellularly to the active two-chain form as shown by pulse-chase labeling experiments. Upon TPA induction, the secretion of u-PA polypeptides increased severalfold, and there was a transient accumulation of pro-u-PA in the culture medium. However, this did not lead to increased u-PA activity in the cultures, since active u-PA was removed by complex formation with the large excess of coinduced PAI-1. Induction of u-PA mRNA was biphasic: The first peak of about tenfold increase in steady-state u-PA mRNA at 3 hr was followed by a steep decline to the baseline level at 12 hr, and a second, slower accumulation of u-PA mRNA occurred over the next few days. The biphasic accumulation of u-PA mRNA was also reflected in u-PA protein synthesis. We conclude that concerted changes in favor of a nonproteolytic extracellular environment occur in TPA-induced K562 cultures undergoing megakaryoblastoid differentiation. These changes include excessive secretion of TIMP and inhibition of the induced u-PA by the simultaneous accumulation of PAI-1.  相似文献   

16.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

17.
Type XIII collagen consists of a short N-terminal intracellular domain, a transmembrane domain, and a collagenous ectodomain, and it is found at many sites of cell adhesion. We report on the characterization of recombinant type XIII collagen. The shed ectodomain was purified from insect cell culture medium and shown to form 240-kDa trimers with a T(m) of 42 degrees C. Correct chain association into a triple-helical conformation was confirmed by limited pepsin digestion and CD spectroscopy. Rotary shadowing electron microscopy of the ectodomain revealed it to be a 150-nm rod with two flexible hinges separating 31-, 52-, and 68-nm portions. The rods represent the collagenous domains 1-3, and the hinges coincide with the non-collagenous domains 2 and 3. By using surface plasmon resonance analysis, the ectodomain showed interaction with immobilized fibronectin, nidogen-2, and perlecan with K(D) values in the nanomolar range. The binding sites of type XIII collagen for fibronectin were localized to the collagenous domains, whereas the binding activities for nidogen-2 and perlecan resided in the pepsin-sensitive portions of the ectodomain. Furthermore, the ectodomain bound significantly to heparin, which also inhibited shedding of the ectodomain in insect cell cultures. The results reveal that type XIII collagen is notably distinct in its structure compared with other cell-surface proteins, and the in vitro binding with fibronectin, heparin, and two basement membrane components is indicative of multiple cell-matrix interactions in which this ubiquitously expressed protein participates.  相似文献   

18.
Summary Cultured mammary cells depend on interaction with a substratum for functional differentiation, even in the presence of lactogenic hormones. Protein synthesis and secretion by mouse mammary epithelial cells on floating collagen gels and (EHS) matrix were compared. Cells were prepared by collagenase digestion of tissue from mid-pregnant mice. Protein synthesis was consistently greater in cells attached to EHS matrix, and was associated with proportionately higher rates of protein secretion into culture medium. Cells on EHS secreted protein into a luminal space formed within multicellular alveoluslike structures. Luminal secreted protein, extracted by EGTA treatment of cells in situ, constituted up to 40% of total secreted radiolabeled protein for cells on EHS matrix. The EGTA extract contained a higher proportion of casein and lactoferrin, whereas transferrin was predominately in the medium. This indicated that cells on EHS matrix had become polarized and were secreting proteins vectorially. In contrast, EGTA treatment of cells on floating collagen gels released virtually no radiolabeled protein, showing that mammosphere formation was a property of cells on EHS. These biochemical observations were supported by ultrastructural evidence. In EHS cultures, the proportion of secreted protein in the luminal fraction, but not the distribution of secreted proteins, changed with time. This suggests that there may be leakage out of the lumen, or intraluminal degradation of protein after secretion. Nevertheless, the results suggest that cellular organization into mammospheres on EHS matrix promotes synthetic and secretory activity. This system provides a useful model for investigation of the regulation of milk secretion.  相似文献   

19.
Summary The effects of collagenous substrata, fibronectin, and fetal bovine serum on the adhesion, proliferation, and adipogenesis of rat stromal-vascular cells are reported. There was no effect on initial stromal-vascular cell-attachment by fetal bovine serum or fibronectin. The number of cells attached to a hydrated collagen-gel was almost twice (P<0.04) the number attached to dried collagen-gel or dried denatured collagen-gel. Total number of cells after 5 days in culture was similar among the collagenous substrata and among the treatments with or without fibronectin in the growth media. Total number of cells increased significantly (P<0.02) with 10% FBS. Adipocytic formation was inhibited by hydrated collagen-gel (P<0.02) compared to dried collagen-gel or dried, denatured collagenous substrata. An interaction occurred between dried, denatured gel and fetal bovine serum so that total formation of adipocytes increased by increasing the level of fetal bovine serum (P<0.07). Adipocytic formation was inhibited by hydrated collagen-gel at all levels of fetal bovine serum. The percentage of cells that converted to adipocytes was significantly lower (P<0.01) on hydrated collagen-gel compared to dried, denatured or dried collagen-gel. Percentage of conversion was not significantly different among levels of fetal bovine serum, although this percentage increased as fetal bovine serum level increased. Adipocytic conversion was not different between fibronectin-treated or untreated cells. Morphology of stromal vascular cells was similar on dried collagen and dried, denatured collagen-gel, but tended to remain bipolar on hydrated collagen-gel. These studies indicate that fetal bovine serum in combination with the extracellular matrix (dried, denatured collagen) increased the differentiation of rat stromal-vascular cells into adipocytes, and that hydrated collagen inhibited differentiation.  相似文献   

20.
We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号