首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

2.
The selenium-dependent glutathione peroxidase activities of three mammalian cell lines, HT29, P31, and N-18, cultured in medium with low serum content, increased about 2-, 5-, and 40-fold, respectively, after supplementation with 100 nM selenite. Catalase, CuZn superoxide dismutase, and Mn superoxide dismutase activities were not generally influenced by selenite supplementation, and there was only a minor nonselenium-dependent glutathione peroxidase activity in the investigated cell lines. Gamma-irradiated control and selenite-supplemented cells showed no changes in the surviving fractions, as estimated by clonogenic survival or [3H]-thymidine uptake, nor were there any significant differences between the two groups in the induction of DNA strand breaks after gamma irradiation under repairing (37 degrees C) or nonrepairing (0 degrees C) conditions. The results suggest that selenium-dependent glutathione peroxidase does not contribute significantly to the radiation resistance of cultured mammalian cells.  相似文献   

3.
本文评价了芦笋老茎澄清汁(CAJ)的降血糖作用,并对其降血糖机制进行了初步探讨。腹腔注射STZ制备类似1型糖尿病大鼠模型,以0.6,1.2和2.0 g/kg体重剂量的CAJ连续灌胃21 d,监测血糖,测定糖化血清蛋白、血清胰岛素、肝糖原、脂代谢及抗氧化系统部分相关指标。结果显示,CAJ可明显降低糖尿病大鼠血清中葡萄糖、糖化血清蛋白、总胆固醇和MDA含量,并显著提高受试模型鼠的血清胰岛素水平、肝糖原含量、血清SOD活性、肝脏SOD、GSH-Px和CAT的活性。上述结果表明CAJ可明显降低糖尿病大鼠的血糖水平,刺激胰岛素分泌,调节血脂,增强抗氧化能力。  相似文献   

4.
Profound changes in antioxidant enzyme activities were observed in a number of vascular tissues during the development of streptozotocin-induced diabetes in rats. In the eyes, there was an increase in superoxide dismutase activity at week 4 of diabetes. However, no difference in superoxide dismutase activity was observed between the control and diabetic animals at week 8. On the other hand, the diabetic state did not seem to affect the catalase activity in the eyes. There was a generalized increase in catalase activity of the eyes from week 4 to week 8 irrespective of the diabetic state. For glutathione peroxidase in the eyes, a decreased activity was observed in the diabetic animals at week 8, but not in week 4. A different pattern of enzyme activity changes was observed in the aorta where an increase in superoxide dismutase activity was observed in the diabetic group at week 4 but not in week 8. On the other hand, an increase in catalase activity was observed only at week 8 but not at week 4. Whereas there was no observed difference between the control and diabetic animals in glutathione peroxidase activity in the aorta, except for a generalized decrease from week 4 to week 8 in both groups of animals. In big contrast to the eyes and aorta where an increase in superoxide dismutase activity was observed at week 4 of diabetes, no change in kidney superoxide dismutase activity was noted at week 4 and a decrease was observed at week 8. A similar pattern of enzyme activity changes was observed for glutathione peroxidase in the kidneys. The catalase activity in the kidneys was not affected at all by the diabetic state at both week 4 and week 8. These results clearly demonstrate the active involvement of these antioxidant enzymes during the development of diabetes, and could be rationalized by the differential response of the tissues towards the different extent of oxidative stress imposed by the diabetic state on the different tissues.  相似文献   

5.
Effects of cobalt on the antioxidant status of control and streptozotocin diabetic rat heart and aorta were examined at the second, fourth and sixth week of treatment. Rats were divided into four groups: control, diabetic, control treated with cobalt chloride and diabetic treated with cobalt chloride. Diabetes was induced by tail vein injection of streptozotocin (STZ). Cobalt treatment groups were given 0.5 mM of CoCl(2) in drinking water. The rats in both groups were further subdivided into three groups of six rats each. Rats in these subgroups were studied at 2-week intervals up to 6 weeks. At the end of the experiment, all animals were sacrificed by decapitation, heart and aorta samples were removed for determination of thiobarbituric acid reactive substance (TBARS) level and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. It was found that lipid peroxidation levels and antioxidant enzyme activities were increased in the streptozotocin-induced diabetic rats at all times studied. Cobalt treatment of diabetic rats (0.5 mM in drinking water) resulted in attenuation of the increased levels of TBARS and antioxidant enzyme activities in heart and aorta. Thus, the effect of oral administration of cobalt at this dose during the early stage of experimental diabetes can be considered as a consequence of altered endogenous defence mechanisms in heart and aorta.  相似文献   

6.
Lee JS 《Life sciences》2006,79(16):1578-1584
In the current study, the effect of soy protein and genistein, one of the main isoflavones in soybeans, on blood glucose, lipid profile, and antioxidant enzyme activities in streptozotocin (STZ)-induced diabetic rats was investigated. Male Sprague-Dawley rats were divided into nondiabetic control, STZ, STZ-genistein supplemented group (STZ-G; 600 mg/kg diet), and STZ-isolated soy protein supplemented group (STZ-ISP; 200 g/kg diet). Diabetes was induced by a single injection of STZ (50 mg/kg BW) freshly dissolved in 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. Diabetes was confirmed by measuring the fasting blood glucose concentration 48-h post-injection. The rats with blood glucose level above 350 mg/dL were considered to be diabetic. Genistein and ISP were supplemented in the diet for 3 weeks. The supplementation of genistein and ISP increased the plasma insulin level but decreased the HbA(IC) level of the STZ-induced diabetic rats. The supplementation of genistein and ISP increased the glucokinase level of the STZ-induced diabetic rats. A significant reduction in glucose-6-phosphatase was observed in the groups treated with genistein and ISP in comparison with the diabetic control group. Hepatic superoxide dismutase, catalase, and glutathione peroxidase activities of the STZ-induced diabetic rats were significantly decreased in comparison with the control rats. Administering genistein and ISP to the STZ-induced diabetic rats significantly increased those enzyme activities. The concentration of thiobarbituric acid reactive substances in the STZ-induced diabetic rats was significantly elevated, while the genistein and ISP supplement decreased it to the control concentration. Genistein and ISP supplements seem to be beneficial for correcting the hyperglycemia and preventing diabetic complications.  相似文献   

7.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

8.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

9.
The aim of this study was to investigate how dietary lactose, compared with sucrose, in association with copper deficiency influences the antioxidant and copper status in the diabetic rat. Two groups of male rats (n = 12) were fed copper-deficient diets containing either 300 g/kg of sucrose or 300 g/kg of lactose in a pair-feeding regime for 35 days. Six rats from each group were injected with streptozotocin to induce diabetes. After a further 16 days the animals were killed and the liver, heart, and kidney removed for the measurement of copper levels and the activities of antioxidant and related enzymes. Diabetes resulted in higher hepatic and renal copper levels compared with controls. The copper content of the heart and kidney in diabetic rats consuming sucrose was also significantly higher than in those consuming lactose. Catalase activity in the liver, heart, and kidney was significantly increased in diabetic rats compared with controls. Hepatic glutathione S-transferase and glucose-6-phosphate dehydrogenase and cardiac copper zinc superoxide dismutase activities were also higher in diabetes. Sucrose, compared with lactose feeding, resulted in higher cytochrome c oxidase and glutathione peroxidase activities in the kidney while glucose-6-phosphate dehydrogenase activity was lower. The combination of lactose feeding and diabetes resulted in significantly higher activities of cardiac managanese superoxide dismutase and catalase and renal manganese superoxide dismutase and glucose-6-phosphate dehydrogenase. These results suggest that sucrose consumption compared with lactose appears to be associated with increased organ copper content and in general decreased antioxidant enzyme activities in copper-deficient diabetic rats.  相似文献   

10.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

11.
Because elevated oxidative stress may exacerbate cardiovascular complications of diabetes mellitus, the current study aimed to investigate the effects of treatment with either vitamin A, an antioxidant, or with insulin on lipid peroxidation products and antioxidant enzyme activities of diabetic rat heart. Also to evaluate whether a combination of vitamin A and insulin exerts more beneficial effects than treatment with each agent alone. Rats were made diabetic with a single injection of streptozotocin (STZ, 55 mg kg(-1) i.p.). Two days after STZ-injection, one group of diabetic rats was treated with vitamin A (retinol acetate, 30 mg kg(-1) day(-1) i.o.) for 12 weeks. A second group of diabetic rats was untreated for 6 weeks and then treated for another 6 weeks with insulin (8-10 IU rat(-1) day(-1) s.c.). Both therapies were applied to another group of diabetic rats for assessment of combined therapy with vitamin A plus insulin. Hearts from 12-week untreated diabetic animals showed about a four-fold increase in the level of thiobarbituric acid reactive substances (TBARS), indicative of increased lipid peroxidation. This was accompanied by approximately 100% increase in both catalase and glutathione peroxidase (GSHPx) enzyme activities. Therapy with insulin alone caused a small but significant improvement in plasma TBARS as well as GSHPx activities, but no significant change in plasma catalase in diabetic animals. Diabetes-induced disturbance in TBARS was almost completely prevented by vitamin A therapy. Although, a similar degree of activities for GSHPx was determined in diabetic animals treated with each agent alone, combination therapy was found to be more effective than single therapies in the recovery of GSHPx of diabetic heart. In contrast to insulin single therapy, vitamin A alone significantly prevented an increase in catalase activity of diabetic heart, and a combination of these agents did not supply any further benefit. Superoxide dismutase (SOD) activity was not found significantly different among the experimental groups. STZ-diabetes also resulted in less plasma retinol and retinol-binding protein (RBP), which was significantly improved by insulin single therapy while vitamin A used alone, failed to increase plasma retinol and RBP levels of diabetic animals. Our findings suggest that single therapy with insulin is unable to preclude oxidative reactions in diabetic heart to the same extent as obtained by vitamin A therapy alone, in spite of allowing recovery of normal growth rate and improved vitamin A metabolism in diabetic rats. A combination of insulin with vitamin A may provide more benefits than use of either agent alone in the treatment of general characteristics of diabetes and the maintenance of antioxidant defence of diabetic heart and thus in the reduction of peroxidative stress-induced cardiac injury.  相似文献   

12.
Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.  相似文献   

13.
In this study, we investigated the efficiency of short-term treatment with gemfibrozil in the reversal of diabetes-induced changes on carbohydrate and lipid metabolism, and antioxidant status of aorta. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.). After 12 weeks of induction of diabetes, the control and diabetic rats were orally gavaged daily with a dosing vehicle alone or with 100 mg/kg of gemfibrozil for 2 weeks. At 14 weeks, there was a significant increase in blood glucose, plasma cholesterol and triglyceride levels of untreated-diabetic animals. Diabetes was associated with a significant increase in thiobarbituric acid reactive substances (TBARS) in both plasma and aortic homogenates, indicating increased lipid peroxidation. Diabetes caused an increase in vascular antioxidant enzyme activity, catalase, indicating existence of excess hydrogen peroxide (H2O2). However, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities in aortas did not significantly change in untreated-diabetic rats. In diabetic plus gemfibrozil group both plasma lipids and lipid peroxides showed a significant recovery. Gemfibrozil treatment had no effect on blood glucose, plasma insulin and vessel antioxidant enzyme activity of diabetic animals. Our findings suggest that the beneficial effect of short-term gemfibrozil treatment in reducing lipid peroxidation in diabetic animals does not depend on a change of glucose metabolism and antioxidant status of aorta, but this may be attributed to its decreasing effect on circulating lipids. The ability of short-term gemfibrozil treatment to recovery of metabolism and peroxidation of lipids may be an effective strategy to minimize increased oxidative stress in diabetic plasma and vasculature.  相似文献   

14.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

15.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

16.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.  相似文献   

17.
The purpose of this study was to investigate the possible antioxidant effect of an aqueous extract of Ajuga iva (Ai) in streptozotocin (STZ)-induced diabetic rats. Twelve diabetic rats were divided into two groups fed a casein diet supplemented or not with Ai (0.5%), for 4 weeks. In vitro, the Ai extract possessed a very high antioxidant effect (1 mg/ml was similar to those of trolox 300 mmol/l). The results indicated that plasma thiobarbituric acid reactive substances (TBARS) values were reduced by 41% in Ai-treated compared with untreated diabetic rats. TBARS concentrations were lower 1.5-fold in liver, 1.8-fold in heart, 1.9-fold in muscle and 2.1-fold in brain in Ai-treated than untreated group. In erythrocytes, Ai treatment increased significantly the activities of glutathione peroxidase (GSH-Px) (+25%) and glutathione reductase (GSSH-Red) (+22%). Superoxide dismutase activity was increased in muscle (+22%), while GSH-Px activity was significantly higher in liver (+28%), heart (+40%) and kidney (+45%) in Ai-treated compared with untreated group. Liver and muscle GSSH-Red activity was, respectively, 1.6- and 1.5-fold higher in Ai-treated than untreated diabetic group. Catalase activity was significantly increased in heart (+36%) and brain (+32%) in Ai-treated than untreated group. Ai treatment decreased plasma nitric oxide (?33%), carbonyls (?44%) and carotenoids (?68%) concentrations. In conclusion, this study indicates that Ajuga iva aqueous extract improves the antioxidant status by reducing lipid peroxidation and enhancing the antioxidant enzymes activities in plasma, erythrocytes and tissues of diabetic rats.  相似文献   

18.
Brain antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) levels were studied in the brains of early diabetic (72 hr) and long term diabetic (one month) rats. Diabetes was induced by injecting streptozotocin (50 mg/kg, i.p.) in citrate buffer. One group of diabetic rats was treated with insulin (1U/day/animal). The results indicate that early diabetic rats exhibit increased SOD and CAT activities with no alteration in the GPX activity. On the contrary, increased CAT decreased GPX activities with no alteration in the SOD activity, was noted in the long-term Diabetic rats. Insulin treatment reversed these alterations in both the groups. It can be concluded that, in diabetic condition antioxidant enzyme levels are elevated and insulin treatment attenuated these changes. Hence, diabetes mellitus, if left untreated, may initiate degenerative processes and other CNS complications due to accumulation of oxidative free radicals.  相似文献   

19.
High fructose feeding (66?% of fructose) induces type-2 diabetes in rats, which is associated with the insulin resistance, hyperinsulinemia, hypertriglyceridemia and oxidative stress. The present study was undertaken to evaluate the effect of ethanol extract of Commiphora mukul gum resin (CMEE) on blood glucose, plasma insulin, lipid profiles, reduced glutathione, lipid peroxidation, protein oxidation and enzymatic antioxidants like superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase in fructose-induced type-2 diabetic rats. A significant gain in body weight, hyperglycemia, hyperinsulinemia, increased lipid profiles, lipid peroxidation, protein oxidation and decreased reduced glutathione, activities of enzymatic antioxidants and insulin sensitivity (increased homeostasis assessment assay) were observed in high-fructose-induced diabetic rats. The administration of CMEE (200?mg/kg/day) daily for 60?days in high-fructose-induced diabetic rats reversed the above parameters significantly. CMEE has the ability to improve insulin sensitivity and delay the development of insulin resistance, aggravate antioxidant status in diabetic rats and may be used as an adjuvant therapy for patients with insulin resistance.  相似文献   

20.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号