首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Fuentes  G Roch  R Marty 《Acta anatomica》1979,105(3):314-325
A quantitative study was carried out on the adult cat optic nerve near the eyeball by systematically measuring the perimeters of all the axons seen through the optic microscope. The main purpose of this study was to define the topographical distribution of these axons in function of their size. Statistical studies show the existence of an area of maximal concentration of large axons in crescent form situated in the temporal zone of the nerve. The neurophysiological implications are discussed.  相似文献   

2.
Morgan  Charles W. 《Brain Cell Biology》2001,30(9-10):767-787
Axon collaterals were identified in 21 of 24 preganglionic neurons in the lateral band of the sacral parasympathetic nucleus of the cat. Following the intracellular injection of HRP or neurobiotin the axons from 20 of these neurons were followed and 53 primary axon collaterals were found to originate from unmyelinated segments and from nodes of Ranvier. Detailed mapping done in the five best labeled cells showed bilateral axon collaterals distributions up to 25,000 μm in length with 950 varicosities and unilateral distributions up to 12,561 μm with 491 varicosities. The axon collaterals appeared to be unmyelinated, which was confirmed at EM, and were small in diameter (average 0.3 μm). Varicosities were located mostly in laminae I, V, VII, VIII and X and in the lateral funiculi. Most varicosities were not in contact with visible structures but some were seen in close apposition to Nissl stained somata and proximal dendrites. Varicosities had average minor diameters of 1.3 μm and major diameters of 2.3 μm. Most were boutons en passant while 10–20% were boutons termineaux. EM revealed axodendritic and axoaxonic synapses formed by varicosities and by the axons between varicosities. It is estimated that the most extensive of these axon collaterals systems may contact over 200 spinal neurons in multiple locations. These data lead to the conclusion that sacral preganglionic neurons have multiple functions within the spinal cord in addition to serving their target organ. As most preganglionic neurons in this location innervate the urinary bladder, it is possible that bladder preganglionic neurons have multiple functions.  相似文献   

3.
The distribution of beta axons to muscle spindles in the tenuissimus and abductor digiti quinti medius (A.D.Q.M.) muscles of the hind limb of the cat was determined by testing the action of single motor axons, capable of producing extrafusal contraction, isolated in the ventral spinal roots on the discharges of individual muscle spindle primary sensory endings recorded in the dorsal spinal roots. The proportion of spindles with beta innervation was 41% in A.D.Q.M. and 30% in tenuissimus. The proportion of fast motor axons that were beta axons was 28% in the A.D.Q.M. and 11% in tenuissimus; usually each beta axon innervated a single spindle while no spindle received more than two beta axons. The beta axons were dynamic in nature and those to any one muscle tended to have slightly lower conduction velocities than the alpha axons though some overlap did occur. The extent to which beta axons can account for the fact that in isolated spindles axons selective to either nuclear bag or nuclear chain fibres are found in about equal proportions whereas a ratio of three static to one dynamic gamma axons is found electrophysiologically is discussed. An explanation for the low incidence of beta innervation previously found electrophysiologically and the considerably higher incidence found histologically is given.  相似文献   

4.
Summary The organization of the substantia gelatinosa and adjacent lamina III in cat lumbo-sacral spinal cord has been studied by light and electron microscopical techniques in normal cord and following dorsal root section.The substantia gelatinosa (lamina II of Rexed) is characterized by bundles of small, non-myelinated axons, principally oriented longitudinally. The substantia gelatinosa cells are small, spindle shaped, with a cytoplasm generally devoid of Nissl substance. There are extensive axo-dendritic and axo-axonal contacts within the substantia gelatinosa and less frequent axo-somatic contacts.Larger marginal cells oriented horizontally on the surface of the substantia gelatinosa and containing Nissl substance are also seen.Lamina III is somewhat similar to the substantia gelatinosa, but lacks the complex bundles of non-myelinated axons.Following dorsal root section, heavy degeneration is seen by light and electron microscopy in lamina III, but is rarely seen in the substantia gelatinosa. It is concluded that the substantia gelatinosa and lamina III are distinct anatomically and therefore may differ functionally.The possible physiological role of the substantia gelatinosa is discussed.This work was supported by a Special Fellowship 2F11 NB 1140 02 NSRB from the National Institute of Neurological Diseases and Blindness, United States Public Health Service.The author is indebted to Dr. E. G.Gray for his excellent advice. I thank Dr. R. W. Guillery, Dr. L. E. Westeum and Dr. B. G. Cragg for their assistance, and Prof. J. Z. Young, F. R. S. for his kind suggestions. I also wish to thank Mr. S. Waterman for the photography.  相似文献   

5.
The differentiation of the axons in the cat myenteric ganglia of the gastro-intestinal sphincters has been examined during pre- and postnatal development. The quantitative analysis has been also used. The differentiation of the axons was a prolonged process that advanced parallel to the maturation of the myenteric nerve perikarya and dendrites. The early fetal period was marked by axonal growth cones. Regardless of the fact that during the development their frequency decreased at the expense of axon varicosities, growth cones were also observed in the first postnatal month. The formation of the axon varicosities was intensive in the late fetal period and in the first weeks after birth. This was judged from the changes in the volume fraction of the varicosities to total neuropil and the number of the varicosities per 100 sp x micrometer of neuropil. The maturation of the varicosities exhibited a longer course which was evident from the changes in the number of the vesicles and in the varicosity area. The cholinergic varicosities differentiated first and most quickly. The so-called p-type varicosities appeared as early as the fetal period, but their number continued to increase after birth. The adrenergic varicosities developed most slowly, which was confirmed by the experiments with 6-OHDA. The axons differentiated with a different speed in the three sphincters examined.  相似文献   

6.
This study was undertaken to determine whether immuno-histochemical staining for DOPA decarboxylase (DDC) is present in axons of rat noradrenergic sympathetic neurons. A sparse plexus of varicose axons exhibiting DDC-like immunoreactivity (DDC-IR) was associated with blood vessels and acini in the submandibular gland, but this was much less extensive than the population that exhibited tyrosine hydroxylase-like immunoreactivity (TH-IR). The varicose terminal TH-IR axons in atrium, spleen, and vas deferens were devoid of DDC-IR both in grown rats and during the post-natal period of axon growth, although weak DDC-IR was seen in large pre-terminal nerve bundles. Similar patterns of staining were seen with paraffin-embedded and with frozen, formaldehyde-fixed material. No enhancement of DDC-IR was seen in any tissue after chronic alteration of catecholamine turnover with reserpine or alpha-methyl-para-tyrosine, and the numbers of submandibular DDC-IR axons were not increased by disruption of axonal transport with colchicine or by decentralization of the superior cervical ganglion. We conclude that terminal noradrenergic axons contain insufficient DDC-IR for microscopic visualization, regardless of their metabolic state, reinforcing previous evidence that DDC-IR can be used as a histochemical marker for dopaminergic axons. By this criterion, the rat submandibular gland may receive a sparse dopaminergic innervation.  相似文献   

7.
Parasympathetic preganglionic neurons in the cat sacral spinal cord innervate intraspinal neurons and pelvic target organs. Retrograde tracing studies have revealed little of the morphology of their axons including their origin, initial segments, or their myelin, due to methodological limitations. Intracellular labeling of single neurons with neurobiotin or HRP has overcome these problems. Axons were studied in 24 preganglionic neurons. In 21 neurons the axon originated as a branch of a dendrite, without a detectable axon hillock, at distances from the soma ranging from 10 to 110 μm (average 34.1 μm ). In 3 neurons the axon was derived from the soma. Initial segments, present in all cells, ranged from 15 to 40 μm (average 26.8 μm). Nearly all axons followed the initial segment with unmyelinated segments that varied between 59 to 630 μm, followed by myelin and nodes of Ranvier. Internodal distances were variable and relatively short (average 93 μm). Axonal diameters measured over the intraspinal course in 18 axons averaged 1.3 μm (range 0.6–2.4 μm) and were relatively constant compared with other neurons. Spine-like protrusions were observed on the initial segments of 12 cells. Axon collaterals originated from unmyelinated sections and nodes of Ranvier. Antidromic action potentials showing initial segment, soma-dendritic inflections, did not differentiate between soma-derived and dendrite-derived axons. The data suggest that axons originating from a dendrite are the normal structure of preganglionic neurons in the lateral sacral parasympathetic nucleus. It is proposed that the particular structure of these axons may be part of a timing mechanism that coordinates preganglionic neurons with other spinal neurons involved in target organ reflexes.  相似文献   

8.
Three tandem spindles and their nerve supplies, reconstructed by light microscopy of serial transverse sections of the cat tenuissimus muscle, were compared to single spindle units. Each tandem spindle consisted of one large unit containing a dynamic bag1, a static bag2, and several static chain fibers (b1b2c unit) linked by the bag2 fiber to a small unit containing only a bag2 and chain fibers (b2c unit). Most features of primary afferents, secondary afferents, and motor neurons were qualitatively and quantitatively similar in both single and tandem b1b2c units. However, b1b2c units of tandem spindles had a lower density of skeletofusimotor innervation than did single b1b2c spindles. The b2c spindle units differed greatly from single or tandem b1b2c units. The b2c spindle units had fewer intrafusal fibers and incoming axons than either the tandem or single b1b2c units. The motor innervation of b2c units was typified by nonselective gamma axons that coinnervated both bag2 and chain fibers, in contrast to the regular occurrence of both selective and nonselective motor axons in b1b2c spindle units. The afferent located at the equator of b2c units differed in size, branching pattern, and intrafusal distribution of its ending from both the primary and secondary sensory axons of b1b2c units and, therefore, might represent a third category of spindle afferent. Thus, cat tenuissimus muscles contain three types of spindle units that differ in the number and organization of muscular and neural elements. These differences in structure and neural organization among tenuissimus spindle units may be a source for generation of different sensory signals in response to common mechanical or fusimotor stimuli.  相似文献   

9.
Perfused squid axons in which K-conductance is blocked show, under voltage clamp, incomplete inactivation of the sodium conductance. The presence of this phenomenon in nonperfused axons was found by comparing membrane current records before and after tetrodotoxin addition to the bathing solution. Sodium currents in nonperfused axons are comparable in behavior at positive potentials to those seen in Cs-perfused axons.  相似文献   

10.
Summary The sprouting of parasympathetic axons into the submandibular sympathetic nerve trunk following sympathetic denervation has been investigated. It was found that a permanent sympathetic denervation was necessary in order for the sprouting to develop and be maintained: if reinnervation by adrenergic nerves was delayed, the sprouting developed but was reduced at longer survival times when the original innervation was reestablished. The evidence for suppression of the cholinergic sprouting by the adrenergic axons is discussed, as is the evidence that these sprouts arise from the submandibular gland.  相似文献   

11.
Under general anesthesia the inferior alveolar nerves of 8 cats were transected unilaterally and the cut ends reapposed. Two of these animals were, under general anesthesia, perfused with fixative 2 days later and 6 animals 12 or 15 weeks later, and the crowns of the mandibular canine teeth were prepared for ultrastructural examination. The distribution of axons at the pulp-predentin border and in the predentinal tubules was measured on the operated and control sides. In unoperated teeth the innervation at the pulp-predentin border paralleled that in the predentinal tubules being denser more coronally. The axons at the pulp-predentin border had disappeared by 2 days after denervation but had returned by 12 weeks and later with a density and distribution similar to that of the control sides.  相似文献   

12.
Neurons in the anterior ventral (AV) thalamic nucleus of human adults were impregnated by Golgi-Kopsch impregnation method. Results showed that at least three morphological types of neurons could be recognized in the human AV thalamic nucleus. Type I neurons were medium to large with rich dendritic arborization. Both tufted and radiating dendritic branching patterns were seen in almost every neuron of this type. Only the initial axonal segments of these cells were impregnated suggesting that these axons were heavily myelinated. Type II neurons were medium in size with poor to moderate dendritic arborization. Many of these cells possess a few dendritic grape-like appendages. Long segments (up to 300 μm) of their axons were impregnated suggesting that these axons were either unmyelinated or thinly myelinated. These axons change their direction and form loops very often. No local branches were seen for these axons suggesting that they could be projection axons. Type III neurons were small with only one or two dendrites with poor arborization. No axons for these cells were seen in this study. The three neuronal types in the human AV thalamic nucleus were compared with neuronal types already described in other thalamic nuclei of human and non-human species. The results of this study might provide a morphological basis for further electrophysiological and / or pathological studies.  相似文献   

13.
Summary Four axon types occur in the lateral geniculate nucleus. Two contain vesicles with mainly round profiles and these are distinguished from each other by their size, the appearance of their contents and by the types of contact they make. The larger RLP axons are interpreted as retinogeniculate and the smaller RSD axons as corticogeniculate fibers. The other two axon types contain many irregular or flattened vesicles and these F axons are regarded as two types of intrageniculate fiber.In laminae A and A 1 encapsulated synaptic zones form around grape-like dendritic appendages. These zones contain all axon types, but RSD axons are rare. Interstitial zones lie between the encapsulated zones and contain synapses formed by many RSD axons, some F and few RLP axons. The interstitial zones continue into the central interlaminar nucleus which forms a narrow band containing no encapsulated zones and few RLP axons. Lamina B contains relatively small RLP axons, very many RSD axons and only a few small encapsulated zones.Axosomatic junctions are rare throughout the nucleus. Axo-axonal junctions occur in all laminae but mostly in the encapsulated zones; the postsynaptic element is always an F axon, RLP or RSD axons generally form the presynaptic element.Supported by Grant NB 06662 from the USPHS. The skillful technical assistance given by Mrs. E. Langer during the course of this work is gratefully acknowledged.  相似文献   

14.
Quantitative estimates of the density of distribution of interneurons forming descending intersegmental connections in the cat spinal cord were obtained. Neurons were labeled by retrograde axonal transport of horseradish peroxidase injected unilaterally at different segmental levels. The mean number of labeled units per section 50 µ thick, in a given zone, was used as the measure of density. The density of distribution of the propriospinal neurons forming the longest tracts between the cervical and lumbosacral regions of the cord was found to be about half the density of distribution of neurons with short (not more than two segments) axons, and to be several times less than the corresponding value for neurons with axons of intermediate length. No marked local peaks of density of distribution of long-axon neurons were found at the level of the brachial enlargement. The number of neurons with crossed axons in most segments was close to half of the total number of propriospinal units. Zones of transverse section of the spinal cord with maximal concentrations of neurons forming direct and crossed propriospinal tracts of different lengths were determined at different levels. Correlation between the quantitative composition of propriospinal neuron populations with characteristics of influences transmitted by these populations is examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 96–105, January–February, 1984.  相似文献   

15.
Autonomic innervation of receptors and muscle fibres in cat skeletal muscle   总被引:3,自引:0,他引:3  
Cat hindlimb muscles, deprived of their somatic innervation, have been examined with fluorescence and electron microscopy and in teased, silver preparations; normal diaphragm muscles have been examined with electron microscopy only. An autonomic innervation was found to be supplied to both intra- and extrafusal muscle fibres. It is not present in all muscle spindles and is not supplied at all to tendon organs. Fluorescence microscopy revealed a noradrenergic innervation distributed to extrafusal muscle fibres and some spindles. On the basis of the vesicle content of varicosities the extrafusal innervation was identified as noradrenergic (32 axons traced), and the spindle innervation as involving noradrenergic, cholinergic and non-adrenergic axons (14 traced). Some of the noradrenergic axons that innervate spindles and extrafusal muscle fibres are branches of axons that also innervate blood vessels. We cannot say whether there are any noradrenergic axons that are exclusively distributed to intra- or extrafusal muscle fibres. The varicosities themselves may be in neuroeffective association with striated muscle fibres only, or with both striated fibres and the smooth muscle cells in the walls of blood vessels. The functional implications of this direct autonomic innervation of muscle spindles and skeletal muscle fibres are discussed and past work on the subject is evaluated.  相似文献   

16.
Summary 2,700 synaptic contacts have been classified according to criteria described in an accompanying paper and the results summarized in tabular form. Only about 20% of the synaptic contacts in laminae A and A1 are formed by axons identifiable as retinogeniculate fibers. About 1/4 of these retinogeniculate synapses are axo-axonal. Approximately 45% of the contacts in these laminae are formed by axons tentatively identifiable as corticogeniculate fibers; about 35% by presumed intrageniculate fibers. Close to one half of the synapses occur in encapsulated synaptic zones, where grapelike dendritic appendages are related mainly to intrageniculate and retinogeniculate axons, and about half lie in interstitial zones, where corticogeniculate and some intrageniculate axons contact distal dendritic segments.Regions of the nucleus receiving from peripheral parts of the retina have relatively more corticogeniculate synapses, and have fewer intrageniculate synapses in the encapsulated zones than do regions receiving from the central parts of the retina.Most of the tissue in lamina B resembles the interstitial zones of laminae A and A1 and over 2/3 of the contacts in lamina B may prove to be corticogeniculate. The retinogeniculate fibers in this lamina are associated with relatively few other axons in simple, small encapsulated zones.Supported by Grant NB 06662 from the USPHS. The skillful technical assistance given by Mrs. E. Langer during the course of this work is gratefully acknowledged.  相似文献   

17.
Several muscle spindles of the cat tenuissimus muscle were cut in serial, 1-micron thick transverse sections and stained with toluidine blue in search for long nuclear chain intrafusal muscle fibers. Five complete poles of the long chain fibers were located. Each fiber pole displayed one plate-type motor ending situated in the extracapsular fiber region. The endings were supplied by myelinated motor axons that originated from intramuscular nerve fascicles containing motor axons to extrafusal muscle fibers. One of the endings was innervated by a collateral from a motor axon that supplied an extrafusal end-plate. Ultrastructurally, the long chain endings resembled extrafusal end-plates. They were more complex, in terms of prominence of sole-plate and degree of post-junctional folding, than any other intrafusal ending present in the spindles. The motor endings of the long chain fibers were assumed to be the terminals of static (fast) skeletofusimotor axons, which preferentially innervate the longest nuclear chain fibers of cat muscle spindles.  相似文献   

18.
Using the methods of retrograde axonal transport of horseradish peroxidase and silver impregnation of degenerating axons, certain data have been obtained demonstrating that frontal, motor, orbital, insular and limbic fields of the cortex serve as sources of afferent fibers for the compact zone of the substantia nigra. The lateral zone gets projections from the same cortical areas (besides the limbic one) as the compact part and, in addition, from the parietal associative, acoustic and visual areas.  相似文献   

19.
T Tashiro  M A Ruda 《Peptides》1988,9(2):383-391
Axons containing both serotonin-like (5-HT)-LI and substance P-like (SP)-LI immunoreactivity were identified in all laminae of the cat spinal cord at the level of the lumbar enlargement. Using an immunologically-specific, double immunofluorescence method, coexistent 5-HT-LI and SP-LI immunoreactivity could be visualized in the same tissue section with appropriate FITC and rhodamine fluorescent filter sets. The fewest number of coexistent axons were observed in the superficial laminae of the dorsal horn, while their number increased in the more ventral dorsal horn laminae. Numerous coexistent axons were observed in the area adjacent to the central canal. The greatest number of coexistent axons was found in the ventral horn, especially in the motoneuronal cell groups. This study demonstrates that axons containing coexistent 5-HT-LI and SP-LI immunoreactivity are found in all laminae of the cat lumbar spinal cord and are thus involved in both sensory and motor functions. Their more frequent occurrence in the ventral horn suggests a greater role for coexistent 5-HT and SP in motor function. Since axons containing coexistent 5-HT and SP, and those containing only 5-HT, likely originate from different populations of neurons, our observations provide evidence for a diverse origin of descending 5-HT afferents to the different spinal laminae.  相似文献   

20.
The distribution of GABA-ergic structures in the intact and neuronally isolated cat cerebral cortex in area 5 was studied by the histochemical reaction for GABA-transaminase 2 and 3 weeks after isolation. The overwhelming majority of GABA-ergic fibers of the neuropil and of synaptic terminals was shown to be formed by axons of a few GABA-ergic interneurons, and only a small proportion of them belong to afferent axons of extracortical origin. GABA-ergic interneurons were subdivided into short-axonal, forming connections within an isolated area, and long-axonal, forming horizontal connections with more distant cortical neurons. GABA-ergic axons give numerous projections to bodies and proximal segments of dendrites of many pyramidal neurons not containing GABA-transaminase, and of stellate neurons, which include cells with GABA-ergic and non-GABA-ergic mediator nature. It is suggested that the influence of some GABA-ergic neurons on others is responsible for intracortical spatial regulation of inhibition.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 365–371, May–June, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号