首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.  相似文献   

2.
Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life‐history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south‐temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork‐tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork‐tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year.  相似文献   

3.
Phenotypic quality may determine the development and expressionof secondary sexual characters. We studied the relationshipbetween molt and several measures of phenotypic quality in thesexually size-dimorphic barn swallow (Hirundo rustica) in itswinter quarters in Namibia. Males were in a more advanced stageof molt than females and juveniles, and the speed of molt asdetermined from the residual of the regression of the size ofthe gap in wings caused by missing and growing feathers on wingmolt score (residual wing raggedness) was also higher in malesthan in females and juveniles. Male barn swallows with longand symmetric tail feathers had a more advanced stage of moltand molted at a higher speed than males with short and asymmetrictails. Long-tailed females had a delayed molt, and females withasymmetric tails had less advanced molt and lower rates of feathergrowth than females with symmetric tails. Molt of secondariesin juveniles also appeared to be less advanced if they had longtails. Adult barn swallows molted their tail feathers in anirregular sequence with the longest, outermost tail featherusually replaced before the second or the third outermost feathers.Good body condition was positively associated with a high moltscore for some feather tracts and a rapid wing molt in adultfemales and tail molt in juveniles. Mallophaga were only weaklynegatively associated with primary and secondary molt scorein adult females and speed of wing molt in adult males. In conclusion,phenotypic quality of adult male barn swallows as reflectedby the expression of their secondary sexual character duringthe previous molt reliably reflected stage and speed of currentmolt.  相似文献   

4.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

5.
Agnar  Ingolfsson 《Ibis》1970,112(1):83-92
The moult of primaries, secondaries, and rectrices in two closely-related gulls, the Great Black-backed Gull Larus mavinus and the Glaucous Gull L. hyperboreus, was studied in Iceland. Both gulls moult their primaries in an extremely regular sequence, starting with the 1st (innermost) and ending with the 10th (oiltermost) feather. Usually two, less often one or three, primaries are growing per wing during the primary moult, which lasts for about six or seven months. Growlng primaries were estimated to lengthen on the average by 8.7 mm per day in marinus and 7.8 mm per day in hyperboreus. The secondaries, usually 24 in number, are shed in two moult waves, one starting with the innermost feather soon after the start of the primary moult and then progressing slowly outwards, the other beginning with the outermost secondary after the primary moult is about half completed and then progressing rapidly inwards. The moult is completed just before the end of the primary moult as the two moult waves meet at about the 16th secondary. There are no marked differences between the two gulls in the moult of secondaries. The moult of rectrices shows large variations in both species, some feathers being much more irregular than others in their time of shedding. In both species, indications of an obscured centrifugal pattern of replacement are seen, although the 5th (next to the outermost) rectrix is usually the last one to be shed. Significant differences were observed between the two species in the degree of regularity of shedding of some feathers and in the average position in the moulting sequence of others. The moult of rectrices starts soon after the moult of primaries is half completed. The feathers are then shed in rapid succession, and the moult is completed some time before the end of the primary moult. The need for good powers of flight at all times is undoubtedly the reason for the protracted primary moult. This in turn causes the moult to start early, in adults sotnetimes before the eggs are laid; immatures moult even earlier than this. The rectrix moult and the main part of the secondary moult do not begin in adults until the young have fledged, but then progress very rapidly. Presumably, the loss of some of these feathers would impair the flying ability to an extent sufficient to make it difficult for the gulls to care for their young, while the rapid moult is necessary in order for the replacement of these feathers to be completed by the time the primary moult is over.  相似文献   

6.
Because many species of large birds must remain capable of flight during moult and breeding, complete replacement of all flight feathers often takes two or more years, with the result that their plumage normally includes many faded, worn and sometimes even broken feathers. It seems adaptive for such birds to have the ability to quickly replace severely damaged feathers. In search of such a feather replacement mechanism, we cut rectrices on a captive Golden Eagle Aquila chrysaetos and found that feathers cut in their first year of use were replaced, on average, after 11.4 months, whereas uncut feathers before and during the experiment were moulted, on average, after 24 months of use. Feather cutting advanced moult, on average, in excess of a year and thereby demonstrates the existence of a previously undescribed neurophysiological mechanism for preferentially replacing damaged feathers.  相似文献   

7.
We investigated how exogenous and endogenous glucocorticoids affect feather replacement in European starlings (Sturnus vulgaris) after approximately 56% of flight feathers were removed. We hypothesized that corticosterone would retard feather regrowth and decrease feather quality. After feather regrowth began, birds were treated with exogenous corticosterone or sham implants, or endogenous corticosterone by applying psychological or physical (food restriction) stressors. Exogenous corticosterone had no impact on feather length and vane area, but rectrices were lighter than controls. Exogenous corticosterone also decreased inter-barb distance for all feathers and increased barbule number for secondaries and rectrices. Although exogenous corticosterone had no affect on rachis tensile strength and stiffness, barbicel hooking strength was reduced. Finally, exogenous corticosterone did not alter the ability of Bacillus licheniformis to degrade feathers or affect the number of feathers that failed to regrow. In contrast, endogenous corticosterone via food restriction resulted in greater inter-barb distances in primaries and secondaries, and acute and chronic stress resulted in greater inter-barb distances in rectrices. Food-restricted birds had significantly fewer barbules in primaries than chronic stress birds and weaker feathers compared to controls. We conclude that, although exogenous and endogenous corticosterone had slightly different effects, some flight feathers grown in the presence of high circulating corticosterone are lighter, potentially weaker, and with altered feather micro-structure.  相似文献   

8.
Wing and tail morphology strongly affect flight performance which may consequently decline during feather moult due to the creation of feather gaps in the flight‐surface. Hence, the size and shape of moult‐related gaps may directly affect flight capacity. Here, I examined the divergent rectrix moult sequence compared to the more common distal moult sequence. In the divergent moult, the focus of rectrix moult is shifted from the tail centre (R1; rectrices numbered distally from mid‐tail outward) to another rectrix (R2 or R3), and then rectrices are moulted bidirectionally, towards the tail centre and outwards. The result of this moult sequence is the splitting of the tail gap into multiple smaller gaps. Using a large moult database including 5669 individuals of 47 Western Palaearctic passerine species, I found evidence of divergent moult sequence for only seven species. Using comparative and experimental approaches, I found that the divergent rectrix sequence is correlated with higher moult speed and lower aerodynamic cost. Furthermore, the divergent rectrix sequence is more common among adults than juveniles. This work focused on the feather moult sequence – a seldom studied aspect of the avian life‐history. I propose that moult‐related aerodynamic costs may be an important evolutionary factor not only in moult speed, but also in moult sequence.  相似文献   

9.
Prey use their locomotory capacity to escape predators, and there should thus be strong viability selection on locomotory morphology of prey. We compared feather morphology of wood pigeons Columba palumbus killed by goshawks Accipiter gentilis with that of survivors to quantify directional and quadratic selection on primary and rectrix feathers. The goshawk is mainly a predator attacking by surprise, leaving wood pigeons with an ability to accelerate fast at a selective advantage. There was directional selection for light primary feathers with a narrow calamus. In addition, there was directional selection for increased area of rectrices. These patterns of natural selection were confirmed in multivariate analyses of selection that showed selection for light primary feathers with a large area and narrow calamus and for a large area of rectrix feathers. These results provide evidence of selection on different aspects of feather morphology directly related to flight performance and thus escape ability from predators.  相似文献   

10.
Seabird moult is poorly understood because most species undergo moult at sea during the non-breeding season. We scored moult of wings, tail and body feathers on 102 Mediterranean Cory's Shearwaters Calonectris diomedea diomedea accidentally caught by longliners throughout the year. Primary renewal was found to be simple and descendant from the most proximal (P1) to the most distal (P10) feather. Secondaries showed a more complex moulting pattern, with three different asynchronous foci: the first starting on the innermost secondaries (S21), the second on the middle secondaries (S5) and the latest on the outermost secondaries (S1). Rectrix moult started at a later stage and was simple and descendant from the most proximal feather (R1) expanding distally. Although a few body feathers can be moulted from prelaying to hatching, moult of ventral and dorsal feathers clearly intensified during chick rearing. Different moulting sequences and uncoupled phenology between primary and secondary renewal suggest that flight efficiency is a strong constraint factor in the evolution of moulting strategies. Moreover, moult of Cory's Shearwaters was synchronous between wings and largely asynchronous between tail halves, with no more than one rectrix moulted at once. This result is probably related to the differential sensitivity of wings and the tail on flight performance, ultimately derived from different aerodynamic functions. Finally, Cory's Shearwater females renewed feathers earlier and faster than males, which may be related to the lower chick attendance of females.  相似文献   

11.
There is increasing evidence of adaptive preferential investment during moult in those feather tracts that are more advantageous for fitness. In this study, we assessed whether, after the manual removal of two functionally different flight feathers (one primary and one rectrix), birds from two common passerine species (Eurasian Blackcap Sylvia atricapilla and European Robin Erithacus rubecula) favoured the regeneration of primary (supposedly the most functionally important feathers) over rectrix feathers. Our results did not show differences between replaced primary and rectrix feathers in their final length, but demonstrated that the gap left by the loss of the primary feather was filled earlier, suggesting that a rapid repair of the most essential feather tracts is also evolutionarily advantageous during the adventitious replacement of plumage.  相似文献   

12.
Molt strategies have received relatively little attention in current ornithology, and knowledge concerning the evolution, variability and extent of molt is sparse in many bird species. This is especially true for East Asian Locustella species where assumptions on molt patterns are based on incomplete information. We provide evidence indicating a complex postbreeding molt strategy and variable molt extent among the Pallas's Grasshopper Warbler Locustella certhiola, based on data from six ringing sites situated along its flyway from the breeding grounds to the wintering areas. Detailed study revealed for the first time that in most individuals wing feather molt proceeds from the center both toward the body and the wing‐tip, a molt pattern known as divergent molt (which is rare among Palearctic passerines). In the Russian Far East, where both breeding birds and passage migrants occur, a third of the adult birds were molting in late summer. In Central Siberia, at the northwestern limit of its distribution, adult individuals commenced their primary molt partly divergently and partly with unknown sequence. During migration in Mongolia, only descendantly (i.e., from the body toward the wing‐tip) molting birds were observed, while further south in Korea, Hong Kong, and Thailand the proportion of potential eccentric and divergent feather renewal was not identifiable since the renewed feathers were already fully grown as expected. We found an increase in the mean number of molted primaries during the progress of the autumn migration. Moderate body mass levels and low‐fat and muscle scores were observed in molting adult birds, without any remarkable increase in the later season. According to optimality models, we suggest that an extremely short season of high food abundance in tall grass habitats and a largely overland route allow autumn migration with low fuel loads combined with molt migration in at least a part of the population. This study highlights the importance of further studying molt strategy as well as stopover behavior decisions and the trade‐offs among migratory birds that are now facing a panoply of anthropogenic threats along their flyways.  相似文献   

13.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

14.
van den Brink, B., Bijlsma, R.G. & van der Have, T.M. 2000. European swallows Hirundo rustica in Botswana during three non-breeding seasons: the effects of rainfall on moult. Ostrich: 71 (1): 198–204.

The rate of moult of European Swallows spending the non-breeding season in Botswana was studied during December-January of 1992/93,1993/94 and 1994/95 to investigate the effects of variability in rainfall and roosting habitat availability. In January 1994, 2–3 million European Swallows were counted at a traditional roost along the Boteti River. The rate of moult was relatively slow, about one feather (primary, secondary or tail feather) was replaced every two weeks in both adults and juveniles. The speed of moult in juveniles was generally lower than in adults, in particular of secondaries and tail feathers. Moulting rate of both primaries and tail feathers was lowest in 1994/95 during a period of drought and coincided with the almost complete destruction of roosting habitat. In 1992/93, moulting rate was highest when rainfall was moderate and roosting habitat abundant. Moulting rate was intermediate in 1993/94 when rainfall was frequent but roosting habitat reduced because of the low water level in the Boteti River. The combined effect of reduced food availability during droughts and higher densities and longer foraging flights when roosting habitat is scarce might explain the annual variation in moulting rate. From the second week of January onwards many adults started moulting the outermost tail feather before the penultimate feathers. This phenomenon could indicate the importance of long tail streamers in aerial manoeuvring when foraging during the return migration to the breeding grounds.  相似文献   

15.
Ecosystems around the world are connected by seasonal migration. The migrant animals themselves are influenced by migratory connectivity through effects on the individual and the population level. Measuring migratory connectivity is notoriously difficult due to the simple requirement of data conveying information about the nonbreeding distribution of many individuals from several breeding populations. Explicit integration of data derived from different methods increases the precision and the reliability of parameter estimates. We combine ring‐reencounter, stable isotope, and blood parasite data of Barn Swallows Hirundo rustica in a single integrated model to estimate migratory connectivity for three large scale breeding populations across a latitudinal gradient from Central Europe to Scandinavia. To this end, we integrated a non‐Markovian multistate mark‐recovery model for the ring‐reencounter data with normal and binomial mixture models for the stable isotope and parasite data. The integration of different data sources within a mark‐recapture modeling framework enables the most precise quantification of migratory connectivity on the given broad spatial scale. The results show that northern‐breeding populations and Southern Africa as well as southern‐breeding populations and Western–Central Africa are more strongly connected through Barn Swallow migration than central European breeding populations with any of the African wintering areas. The nonbreeding distribution of Barn Swallows from central European breeding populations seems to be a mixture of those populations breeding further north and south, indicating a migratory divide.  相似文献   

16.
ABSTRACT Conservation genetic analyses of wildlife have increased greatly in the past 10 yr, yet genetic studies of parrots are rare because of difficulties associated with capturing them and obtaining samples. Recent studies have demonstrated that molted feathers can provide a useful source of DNA, but success rates have varied considerably among studies. Our objective was to determine if molted macaw feathers from Blue‐and‐yellow Macaws (Ara ararauna), Scarlet Macaws (A. macao), and Red‐and‐green Macaws (A. chloropterus) collected from rainforest geophagy sites called clay licks could provide a good source of DNA for population genetic studies. Specific objectives were to determine (1) how nuclear DNA microsatellite amplification success and genotyping error rates for plucked macaw feathers compared to those for molted feathers collected from clay licks in the Amazon rainforest, and (2) if feather size, feather condition, species, or extraction method affected microsatellite amplification success or genotyping error rates from molted feathers. Amplification success and error rates were calculated using duplicate analyses of four microsatellite loci. We found that plucked feathers were an excellent source of DNA, with significantly higher success rates (P < 0.0001) and lower error rates (P= 0.0002) than for molted feathers. However, relatively high success rates (75.6%) were obtained for molted feathers, with a genotyping error rate of 11.7%. For molted feathers, we had higher success rates and lower error rates for large feathers than small feathers and for feathers in good condition than feathers that were moldy and broken when collected. We also found that longer incubation times and lower elution volumes yielded the highest quality DNA when extracting with the Qiagen DNeasy tissue kit. Our study demonstrates that molted feathers can be a valuable source of genetic material even in the challenging conditions of tropical rainforests, and our results provide valuable information for maximizing DNA amplification success rates when working with shed feathers of parrots.  相似文献   

17.
Migratory species employ a variety of strategies to meet energetic demands of postbreeding molt. As such, at least a few species of western Neotropical migrants are known to undergo short‐distance upslope movements to locations where adults molt body and flight feathers (altitudinal molt migration). Given inherent difficulties in measuring subtle movements of birds occurring in western mountains, we believe that altitudinal molt migration may be a common yet poorly documented phenomenon. To examine prevalence of altitudinal molt migration, we used 29 years of bird capture data in a series of linear mixed‐effect models for nine commonly captured species that breed in northern California and southern Oregon. Candidate models were formulated a priori to examine whether elevation and distance from the coast can be used to predict abundance of breeding and molting birds. Our results suggest that long‐distance migrants such as Orange‐crowned Warbler (Oreothlypis celata) moved higher in elevation and Audubon's Warbler (Setophaga coronata) moved farther inland to molt after breeding. Conversely, for resident and short‐distance migrants, we found evidence that birds either remained on the breeding grounds until they finished molting, such as Song Sparrow (Melospiza melodia) or made small downslope movements, such as American Robin (Turdus migratorius). We conclude that altitudinal molt migration may be a common, variable, and complex behavior among western songbird communities and is related to other aspects of a species’ natural history, such as migratory strategy.  相似文献   

18.
Carotenoid‐based plumage coloration plays a critical role for both inter‐ and intrasexual communication. Habitat and diet during molt can have important consequences for the development of the ornamental signals used in these contexts. When molt occurs away from the breeding grounds (e.g., pre‐alternate molt on the wintering grounds, or stopover molt), discerning the influence of habitat and diet can be particularly important, as these effects may result in important carryover effects that influence territory acquisition or mate choice in subsequent seasons. Several species of songbirds in western North America, including the Bullock's oriole (Icterus bullockii), migrate from the breeding grounds to undergo a complete prebasic (post‐breeding) molt at a stopover site in the region affected by the Mexican monsoon climate pattern. This strategy appears to have evolved several times independently in response to the harsh, food‐limited late‐summer conditions in the arid West, which contrast strongly with the high productivity driven by heavy rains that is characteristic of the Mexican monsoon region. Within this region, individuals may be able to optimize plumage coloration by molting in favourable areas characterized by high resource abundance. We used stable isotope analysis (δ13C, δ15N) to ask whether the diet and molt habitat/location of Bullock's orioles influenced their expression of carotenoid‐based plumage coloration as well as plumage carotenoid content and composition. Bullock's orioles with lower feather δ15N values acquired more colorful plumage (orange‐shifted hue) but had feathers with lower total carotenoid concentration, lower zeaxanthin concentration, and marginally lower canthaxanthin and lutein concentration. Examining factors occurring throughout the annual cycle are critical for understanding evolutionary and ecological processes. Here, we demonstrate that conditions experienced during a stopover molt, occurring hundreds to thousands of kilometers from the breeding grounds, influence the production of ornamental plumage coloration, which may carryover to influence inter‐ and intrasexual signaling in subsequent seasons.  相似文献   

19.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

20.
Molt is an energetically costly process, and songbirds (Order Passeriformes) exhibit a diversity of strategies to maximize their survival and reproductive success while meeting the energetic demands of the annual prebasic molt. Nearctic‐Neotropic migrants in western North America commonly exhibit one of three strategies: (1) remain in breeding areas to molt, (2) migrate long distances to molt before continuing to wintering areas, or (3) migrate to wintering areas and then molt. Among species that molt in or near breeding areas, the nature of small‐scale movements to undergo molt remains largely unknown. We used banding data collected over a period of 27 yr and across an elevational gradient to examine the propensity of Wilson's Warblers (Cardellina pusilla) to molt and breed at the same or different locations in northern California and southern Oregon. We found that individual adult Wilson's Warblers were more likely to breed at lower elevations and molt at higher elevations, suggesting that some individuals move altitudinally after breeding to complete the definitive prebasic molt. Such altitudinal movements may be more common among Nearctic‐Neotropic migrants in western North America than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号