首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolytic deamination of 5-methyl cytosine in double stranded DNA results in formation of a T/G mismatch that—if left unrepaired—leads to a C→T transition mutation in half of the progeny. In addition to several mismatch-specific glycosylases that have been found in both pro- and eukaryotes to channel this lesion into base excision repair by removing the T from the mismatch, Vsr endonuclease from Escherichia coli has been described which initiates repair by an endonucleolytic strand incision 5′ to the mismatched T. We have isolated a gene coding for a homolog of E.coli Vsr endonuclease from the thermophilic bacterium Bacillus stearothermophilus H3 (Vsr.Bst) using a method that allows PCR amplification with degenerated primers of gene segments which code for only one highly conserved amino acid region. Vsr.Bst was produced heterologously in E.coli and purified to apparent homogeneity. Vsr.Bst specifically incises heteroduplex DNA with a preference for T/G mismatches. The selectivity of Vsr.Bst for the sequence context of the T/G mismatch appears less pronounced than for Vsr.Eco.  相似文献   

2.
In RecBCD+ cells, a mutated single-strand DNA 3′-5′ exonuclease ExoI (SbcB15) induced an increase in stationary-phase mutation. In sbcB15 cells, as in wild-type cells, these mutations partially required RecA, RecB, RecF, and expression of the LexA regulon. The absence of nuclease SbcCD in sbcB15 cells decreased stationary-phase mutation and induced an increase in the number of cell filaments. The absence of ExoI (Δxon) in wild-type or sbcC cells did not change significantly the stationary-phase mutation. Differences between the sbcB15 and ΔxonA cells suggest a correlation between level of SOS induction and the generation of stationary-phase mutations.  相似文献   

3.
Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resembles these endonucleases in overall topology but also how Vsr diverges in terms of the detailed catalytic mechanism. A histidine and two metal–water clusters catalyze the phosphodiester cleavage. The mode of DNA damage recognition is also unique to Vsr. All other structurally characterized DNA damage-binding enzymes employ a nucleotide flipping mechanism for substrate recognition and for catalysis. Vsr, on the other hand, recognizes the TG mismatch as a wobble base pair and penetrates the DNA with three aromatic residues on one side of the mismatch. Thus, Vsr endonuclease provides important counterpoints in our understanding of endonucleolytic mechanisms and of damaged DNA recognition.  相似文献   

4.
Foster PL 《Mutation research》1999,436(2):179-184
The levels of proteins required for methyl-directed mismatch repair appear to decline in stationary-phase and nutritionally-deprived cells of Escherichia coli. It has been hypothesized that error-correction by the system also declines, and this decline is responsible for adaptive or stationary-phase mutations. However, evidence in support of this hypothesis is lacking. The mismatch repair system is no less effective in correcting errors during prolonged selection than it is during growth. Furthermore, mismatch repair proteins supplied in excess reduce both growth-dependent and adaptive mutation.  相似文献   

5.
The crystal structure of the Escherichia coli Vsr endonuclease bound to a C(T/G)AGG substrate revealed that the DNA is held by a pincer composed of a trio of aromatic residues which intercalate into the major groove, and an N-terminus alpha helix which lies across the minor groove. We have constructed an N-terminus truncation (Delta14) which removes most of the alpha helix. The mutant is still fairly proficient in mediating very short patch repair. However, its endonuclease activity is considerably reduced and, in contrast to that of the wild type protein, cannot be stimulated by MutL. We had shown previously that excess Vsr in vivo causes mutagenesis, probably by inhibiting the participation of MutL in mismatch repair. The Delta14 mutant has diminished mutagenicity. In contrast, four enzymatically inactive mutants, with intact N-termini, are as mutagenic as the wild type protein. On the basis of these results we suggest that MutL causes a conformational change in the N-terminus of Vsr which enhances Vsr activity, and that this functional interaction between Vsr and MutL decreases the ability of MutL to carry out mismatch repair.  相似文献   

6.
This paper is an invited Response to a recent Commentary [P.L. Foster, Rev. Mut. Res. 436 (1999) 179-184] entitled "Are adaptive mutations due to a decline in mismatch repair? The evidence is lacking". The Commentary argues that no evidence exists supporting the idea that mismatch repair is limiting specifically during stationary-phase mutation. A primary concern of the author is to question the method that we used previously to measure growth-dependent mutation. In this method, mutation rates are calculated using counts of mutant colonies taken at times when those colonies arise, rather than at a predetermined, fixed time. Here we show further data that illustrate why this must be done to ensure accurate mutation measurements. Such accuracy was necessary for our published determination that mismatch repair proteins are not limiting during growth-dependent mutation, but become so during stationary-phase mutation. We review the evidence supporting the idea that stationary-phase reversion of a lac frameshift mutation occurs in an environment of decreased mismatch repair capacity. Those data are substantial. The data presented in the Commentary, in apparent contradiction to this idea, do not justify the conclusion presented there.  相似文献   

7.
DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS–MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.  相似文献   

8.
Very-short-patch repair (Vsr) enzymes occur in a variety of bacteria, where they initiate nucleotide excision repair of G:T mismatches arising by deamination of 5-methyl-cytosines in specific regulatory sequences. We have now determined the structure of the archetypal dcm-Vsr endonuclease from Escherichia coli bound to the cleaved authentic hemi-deaminated/hemi-methylated dcm sequence 5′-C-OH-3′ 5′-p-T-p-A-p-G-p-G-3′/3′-G-p-G-p-T-pMe5C-p-C formed by self-assembly of a 12mer oligonucleotide into a continuous nicked DNA superhelix. The structure reveals the presence of a Hoogsteen base pair within the deaminated recognition sequence and the substantial distortions of the DNA that accompany Vsr binding to product sites.  相似文献   

9.
Adaptive (or stationary-phase) mutation is a group of phenomena in which mutations appear to occur more often when selected than when not. They may represent cellular responses to the environment in which the genome is altered to allow survival. The best-characterized assay system and mechanism is reversion of a lac allele on an F' sex plasmid in Escherichia coli, in which the stationary-phase mutability requires homologous recombination functions. A key issue has concerned whether the recombination-dependent mutation mechanism is F' specific or is general. Hypermutation of chromosomal genes occurs in association with adaptive Lac(+) mutation. Here we present evidence that the chromosomal hypermutation is promoted by recombination. Hyperrecombinagenic recD cells show elevated chromosomal hypermutation. Further, recG mutation, which promotes accumulation of recombination intermediates proposed to prime replication and mutation, also stimulates chromosomal hypermutation. The coincident mutations at lac (on the F') and chromosomal genes behave as independent events, whereas coincident mutations at lac and other F-linked sites do not. This implies that transient covalent linkage of F' and chromosomal DNA (Hfr formation) does not underlie chromosomal mutation. The data suggest that recombinational stationary-phase mutation occurs in the bacterial chromosome and thus can be a general strategy for programmed genetic change.  相似文献   

10.
In Escherichia coli, starvation (stationary-phase)-mediated differentiation involves 50 or more genes and is triggered by an increase in cellular sigma s levels. Western immunoblot analysis showed that in mutants lacking the protease ClpP or its cognate ATPase-containing subunit ClpX, sigma s levels of exponential-phase cells increased to those of stationary-phase wild-type cells. Lack of other potential partners of ClpP, i.e., ClpA or ClpB, or of Lon protease had no effect. In ClpXP-proficient cells, the stability of sigma s increased markedly in stationary-phase compared with exponential-phase cells, but in ClpP-deficient cells, sigma s became virtually completely stable in both phases. There was no decrease in ClpXP levels in stationary-phase wild-type cells. Thus, sigma s probably becomes more resistant to this protease in stationary phase. The reported sigma s-stabilizing effect of the hns mutation also was not due to decreased protease levels. Studies with translational fusions containing different lengths of sigma s coding region suggest that amino acid residues 173 to 188 of this sigma factor may directly or indirectly serve as at least part of the target for ClpXP protease.  相似文献   

11.
Very short patch repair: reducing the cost of cytosine methylation   总被引:11,自引:1,他引:10  
In Escherichia coli and related bacteria, the product of gene dcm methylates the second cytosine of 5'-CCWGG sequences (where W is A or T). Deamination of 5-methylcytosine (5meC) results in C to T mutations. The mutagenic potential of 5meC is reduced by a system called very short patch (VSP) repair, which replaces T with C. T:G and U:G mispairs in the methylatable sequence and in related sequences are recognized by the product of vsr , a gene adjacent to dcm . Vsr creates a nick just 5' of the mispaired pyrimidine to initiate the repair. Additional products known to be required for VSP repair are DNA polymerase I and DNA ligase. MutS and MutL have a stimulatory role but are not required. The ability of Vsr to recognize T:G mispairs in sequences related to CCWGG is probably responsible for over- and under-representation of certain tetranucleotides in the E. coli genome. Although VSP repair reduces spontaneous mutations at 5meCs in replicating bacteria, mutation hot-spots persist at these sites. Under conditions that more accurately mimic the natural environment of E. coli , VSP repair appears to be effective in preventing mutation at 5meC.  相似文献   

12.
Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida. Both the absence of LigD or Ku resulted in characteristic spectra of stationary-phase mutations that differed from each other and also from the wild-type spectrum. This indicates that LigD and Ku may participate also in mutagenic pathways that are independent from each other. Our results also imply that both phosphoesterase (PE) and polymerase (POL) domains of the LigD protein are involved in the occurrence of mutations in starving P. putida. The participation of both Ku and LigD in the occurrence of stationary-phase mutations was further supported by the results of the analysis of mutation spectra in stationary-phase sigma factor RpoS-minus background. The spectra of mutations identified in the RpoS-minus background were also distinct if LigD or Ku was absent. Interestingly, the effects of the presence of these enzymes on the frequency of occurrence of certain types of mutations were different or even opposite in the RpoS-proficient and deficient backgrounds. These results imply that RpoS affects performance of mutagenic pathways in starving P. putida that utilize LigD and/or Ku.  相似文献   

13.
Vsr mediates very short patch repair in Escherichia coli, correcting T/G mismatches caused by deamination of 5-methylcytosine to thymine. MutS and MutL, part of the post-replication mismatch repair system, stimulate VSP repair. In this study, we use a bacterial two-hybrid assay to show that MutL interacts with Vsr. We also show that interaction between Vsr and MutL inhibits the ability of MutL to dimerize, to interact with MutS and MutH and to mediate a previously unknown interaction between MutS and MutH. This inhibition may explain why high levels of Vsr are mutagenic in vivo. In addition, we show that the Mut fusion proteins are repair proficient in the bacterial two-hybrid assay, making it possible to study their interactions in various genetic backgrounds, or in the presence of DNA damaging agents.  相似文献   

14.
A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished.The existence of methylated DNA in procaryotes and eucaryotes has been well documented, with 5-methylcytosine (m5C) being the most commonly modified base (1). Organisms use m5C as an epigenetic tag, but this modified base is very unstable and can undergo spontaneous deamination (15), resulting in a T:G mismatch. In the absence of an appropriate repair mechanism, cytosine deamination is highly mutagenic. Since the deamination usually occurs in a nonreplicating background, the lesion is refractory to methyl-directed mismatch repair. If the T:G mismatch is repaired by a general repair mechanism, the creation of an A·T substitution is as likely as the restoration of the original G·C base pair. In DNA, thymine resulting from deamination of m5C cannot be removed by general repair mechanisms because they do not recognize this thymine as erroneous. As a result, in the absence of a specific repair mechanism, deamination of m5C is highly mutagenic.In Escherichia coli, a repair pathway counteracting the mutagenic effects of hydrolytic deamination of m5C is based on the action of a very short patch (VSP) repair system (2, 5, 8, 18, 23). The central enzyme of this pathway is Vsr, an endonuclease whose coding sequence overlaps the gene for M.EcoKDcm, an m5C methyltransferase (m5C-MTase) (19, 23). In genomes of other bacteria, the vsr genes are invariably associated with genes coding for m5C-MTases (3, 16, 20). The Vsr endonucleases that accompany m5C-MTases are believed to exhibit sequence specificity based on the recognition sequence of the accompanying MTase. However, only a few MTases have been studied in detail and the data indicate that methylation at sites other than that ascribed to the corresponding restriction endonuclease can occur with significant frequency (4), indicating that the recognition sequence of an MTase is somewhat arbitrarily assigned. The best-characterized Vsr endonuclease, V.EcoKDcm (9, 10, 29), is a gene product of E. coli K-12. This endonuclease recognizes the sequence CTWGG (W is A or T), where the underlined thymine is mispaired with guanine. The enzyme nicks the DNA backbone on the 5′ side of the mispaired thymine (12). The crystal structure of V.EcoKDcm shows that its catalytic center consists of two conserved aspartic acid residues (D51 and D97), glutamic acid (E25), threonine (T63), and two histidines (H64 and H69). Alanine-scanning mutagenesis of these conserved residues revealed that E25A, H64A, and D97A mutants have reduced activity, while D51A and H69A mutants have no detectable activity (28-30).An individual strain of Neisseria gonorrhoeae may produce up to 16 different DNA MTases, with the bulk of these enzymes adding m5C to one of the cytosines in the recognition sequence (20, 25). Due to the high degree of potential cytosine methylation in the gonococcus, one might predict that genes containing any of these recognition sequences would represent hot spots for mutation. However, to date, no hot spots have been identified. Furthermore, we were only able to identify two potential Vsr endonucleases. While the genes encoding both of these proteins appear to be linked to restriction-modification system genes in a variety of gonococcal strains, these systems appear to be inactive (16). To understand the biochemical basis of VSP repair in the Neisseriaceae, we studied the properties of Vsr endonucleases from N. gonorrhoeae FA1090. Given the large number of m5C-MTases found in the gonococcus and the paucity of vsr genes identified using bioinformatic analysis based on amino acid sequence similarity with known Vsr proteins, it is possible that the Vsr endonucleases expressed by N. gonorrhoeae could have more general sequence recognition properties than those found in E. coli or Bacillus stearothermophilus. Alternatively, this species could have genes encoding more Vsr endonucleases which are too divergent structurally to be identified by bioinformatic methods. Our results indicate that N. gonorrhoeae FA1090 expresses two Vsr endonucleases. The first, V.NgoAXIII, recognizes T:G mismatches in all nucleotide contexts of known gonococcal MTases tested, and the second, V.NgoAXIV, recognizes only a subset. Moreover, comparison of their amino acid sequences has shown that these Vsr endonucleases differ in a region responsible for the recognition and cleavage of T:G mismatches, suggesting the existence of two different families of enzymes.  相似文献   

15.
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression.  相似文献   

16.
Working with a Streptomyces albus strain that had previously been bred to produce industrial amounts (10 mg/ml) of salinomycin, we demonstrated the efficacy of introducing drug resistance-producing mutations for further strain improvement. Mutants with enhanced salinomycin production were detected at a high incidence (7 to 12%) among spontaneous isolates resistant to streptomycin (Strr), gentamicin, or rifampin (Rifr). Finally, we successfully demonstrated improvement of the salinomycin productivity of the industrial strain by 2.3-fold by introducing a triple mutation. The Strr mutant was shown to have a point mutation within the rpsL gene (encoding ribosomal protein S12). Likewise, the Rifr mutant possessed a mutation in the rpoB gene (encoding the RNA polymerase β subunit). Increased productivity of salinomycin in the Strr mutant (containing the K88R mutation in the S12 protein) may be a result of an aberrant protein synthesis mechanism. This aberration may manifest itself as enhanced translation activity in stationary-phase cells, as we have observed with the poly(U)-directed cell-free translation system. The K88R mutant ribosome was characterized by increased 70S complex stability in low Mg2+ concentrations. We conclude that this aberrant protein synthesis ability in the Strr mutant, which is a result of increased stability of the 70S complex, is responsible for the remarkable salinomycin production enhancement obtained.  相似文献   

17.
Spontaneous mutations arise not only in exponentially growing bacteria but also in non-dividing or slowly dividing stationary-phase cells. In the latter case mutations are called adaptive or stationary-phase mutations. High spontaneous mutability has been observed in temperature sensitive Escherichia coli dnaQ49 strain deficient in 3'-->5' proofreading activity assured by the e subunit of the main replicative polymerase, Pol III. The aim of this study was to evaluate the effects of the dnaQ49 mutation and deletion of the umuDC operon encoding polymerase V (Pol V) on spontaneous mutagenesis in growing and stationary-phase E. coli cells. Using the argE3(OC) -->Arg+ reversion system in the AB1157 strain, we found that the level of growth-dependent and stationary-phase Arg+ revertants was significantly increased in the dnaQ49 mutant at the non-permissive temperature of 37 degrees C. At this temperature, in contrast to cultures grown at 28 degrees C, SOS functions were dramatically increased. Deletion of the umuDC operon in the dnaQ49 strain led to a 10-fold decrease in the level of Arg+ revertants in cultures grown at 37 degrees C and only to a 2-fold decrease in cultures grown at 28 degrees C. Furthermore, in stationary-phase cultures Pol V influenced spontaneous mutagenesis to a much lesser extent than in growing cultures. Our results indicate that the level of Pol III desintegration, dependent on the temperature of incubation, is more critical for spontaneous mutagenesis in stationary-phase dnaQ49 cells than the presence or absence of Pol V.  相似文献   

18.
During prion diseases, a normally benign, host protein, denoted PrPC, undergoes alternative folding into the aberrant isoform, PrPSc. We used ELISA to identify and confirm hits in order to develop leads that reduce PrPSc in prion-infected dividing and stationary-phase mouse neuroblastoma (ScN2a-cl3) cells. We tested 52,830 diverse small molecules in dividing cells and 49,430 in stationary-phase cells. This led to 3100 HTS and 970 single point confirmed (SPC) hits in dividing cells, 331 HTS and 55 confirmed SPC hits in stationary-phase cells as well as 36 confirmed SPC hits active in both. Fourteen chemical leads were identified from confirmed SPC hits in dividing cells and three in stationary-phase cells. From more than 682 compounds tested in concentration–effect relationships in dividing cells to determine potency (EC50), 102 had EC50 values between 1 and 10 μM and 50 had EC50 values of <1 μM; none affected cell viability. We observed an excellent correlation between EC50 values determined by ELISA and Western immunoblotting for 28 representative compounds in dividing cells (R2 = 0.75; p <0.0001). Of the 55 confirmed SPC hits in stationary-phase cells, 23 were piperazine, indole, or urea leads. The EC50 values of one indole in stationary-phase and dividing ScN2a-cl3 cells were 7.5 and 1.6 μM, respectively. Unexpectedly, the number of hits in stationary-phase cells was ~10% of that in dividing cells. The explanation for this difference remains to be determined.  相似文献   

19.
Using rabbit polyclonal antibodies, we have shown that the Dcm cytosine methylase of Escherichia coli is maintained at a constant level during cell growth, while Vsr endonuclease levels are growth phase dependent. Decreased production of Vsr relative to Dcm during the log phase may contribute substantially to the mutability of 5-methylcytosine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号