首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diethyl l-aspartate was polymerized by a bacterial protease from Bacillus subtilis (BS) in organic solvent at a temperature between 30 and 50 degrees C to yield alpha-linked poly(ethyl l-aspartate) having an M(w) of up to 3700 and a maximum polymer yield of 85%. The best polymerization conditions were the 40 degrees C polymerization of diethyl l-aspartate using 30% protease BS containing 4.5 vol % water in acetonitrile for 2 days. Poly(ethyl l-aspartate) was readily depolymerized by the enzyme into the oligomeric and monomeric l-aspartate in aqueous acetonitrile. Poly(sodium aspartate) prepared by the saponification of poly(ethyl l-aspartate) was readily biodegradable by activated sludge obtained from the municipal sewage treatment plant. Also, poly(sodium aspartate) was depolymerized by the hydrolase enzyme into the monomeric aspartate. These results may indicate the sustainable chemical recycling and biorecycling of this polymer.  相似文献   

2.
A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.  相似文献   

3.
An aliphatic polythioester was enzymatically prepared by the direct polycondensation of mercaptoalkanoic acid using immobilized lipase of Candida antarctica (lipase CA) in bulk. The commercially available 11-mercaptoundecanoic acid was polymerized by lipase CA in bulk in the presence of molecular sieves 4A as a water absorbent at 110 degrees C for 48 h to produce poly(11-mercaptoundecanoate) with an M(w) of 34 000 in high yield. The 104.5 degrees C melting temperature (T(m)) of poly(11-mercaptoundecanoate) was about 20 degrees C higher than that of the corresponding polyoxyester, poly(11-hydroxyundecanoate). The polythioester was readily transformed by lipase into the corresponding cyclic oligomers mainly consisting of the dimer, which were readily repolymerized by the ring-opening polymerization using lipase as a sustainable chemical recycling.  相似文献   

4.
Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive.  相似文献   

5.
Poly(ester urethane) (PEU) is a class of biodegradable polymer that has been applied as tissue-engineering scaffolds with minimum toxicity. Despite its unique biocompatibility, there have been no reports in modifying the PEU backbone to design a soluble, PEU-based DNA carrier. We have developed a method of incorporating tertiary amines and poly(ethylene glycol) (PEG) into PEU to synthesize a soluble poly(amino ester glycol urethane) (PaEGU) as a novel transfection reagent. Parallel to this, we have synthesized poly(amino ester) (PaE) and poly(amino ester urethane) (PaEU) as the control polymers. The test transfection reagent PaEGU and the control PaE were similar in their properties of being soluble and buffering pH in water and their capabilities of self-assembling with DNA and transfecting the target cells. Significantly, PaEGU exhibited faster hydrolysis kinetics than PaE, half-lives of 19 and 36 h for PaEGU and PaE, respectively, underlying PaEGU's unique property of low cytotoxicity. However, in comparison to PaEGU, the other control polymer, PaEU, was not readily dissolved in water, indicating the importance of PEG units in PaEGU in increasing polymer hydrophilicity. This study demonstrated a useful synthesis scheme for the PEU-based transfection reagent PaEGU. The combination of tertiary amine, ester, PEG, and urethane units in the polymer backbone constitutes a feasible approach for the future design of low-toxicity gene transfer vectors.  相似文献   

6.
Chitin based polyurethane elastomers with potential as biomedical implants with tunable mechanical properties were synthesized by step growth polymerization techniques using poly(epsilon-caprolactone) (PCL) and 4,4'-diphenylmethane diisocyanate (MDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). Molecular characterization was done using FTIR, 1H NMR and 13C NMR techniques. The mechanical properties of these polymers were improved with increase in the chitin contents. Optimum mechanical properties were obtained from elastomers extended with chitin in comparison to elastomers extended with BDO. Cytotoxicity of the synthesized polyurethane samples was affected by varying the chitin contents in the chemical composition of the final polyurethane (PU). It is revealed that the final polymers extended with chitin are preferred candidates for surgical threads with on going investigations into their in vitro biocompatibility and non-toxicity.  相似文献   

7.
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. Increasingly, raw materials such as crude oil are in short supply for the synthesis of plastics, and the recycling of waste plastics is becoming more important. As the importance of recycling increases, so do studies on elucidation of the biodegradability of polyurethanes. Polyurethanes are an important and versatile class of man-made polymers used in a wide variety of products in the medical, automotive and industrial fields. Polyurethane is a general term used for a class of polymers derived from the condensation of polyisocyanates and polyalcohols. Despite its xenobiotic origins, polyurethane has been found to be susceptible to biodegradation by naturally occurring microorganisms. Microbial degradation of polyurethanes is dependent on the many properties of the polymer such as molecular orientation, crystallinity, cross-linking and chemical groups present in the molecular chains which determine the accessibility to degrading-enzyme systems. Esterase activity (both membrane-bound and extracellular) has been noted in microbes which allow them to utilize polyurethane. Microbial degradation of polyester polyurethane is hypothosized to be mainly due to the hydrolysis of ester bonds by these esterase enzymes.  相似文献   

8.
Generating new carbon–carbon (C–C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C–C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on dihydroxyacetone phosphate-dependent aldolases in particular. Biochemical properties and applications for synthesis of rare sugars and carbohydrates will be discussed.  相似文献   

9.
This protocol describes the synthesis of poly(L-lactide) by ring-opening polymerization of L-lactide using tin(II) 2-ethylhexanoate catalyst as well as the synthesis of polyglycolide by ring-opening polymerization of glycolide. Ring-opening polymerization of cyclic diesters synthesized from alpha-hydroxycarboxylic acids gives high-molecular-weight polyester in high yield. Tin(II) 2-ethylhexanoate catalyst is the most common catalyst for ring-opening polymerization of diesters owing to its high reactivity and low toxicity. Purity of monomers and the amount of water and alcohol in the reaction system are significant factors for increasing molecular weight and conversion of polyesters. The molecular weight of the polyesters is also dependent on reaction temperature and reaction time. This protocol can be completed in 3 d for the synthesis of poly(L-lactide) and 2 d for the synthesis of polyglycolide.  相似文献   

10.
Poly(beta-malic acid) and poly(beta-3-alkylmalic acid) derivatives, as synthetic polyhydroxyalkanoates (PHAs), present several advantages as macromolecular materials for temporary biomedical applications. Indeed, such polymers, which can be synthesized through different chemical and biological routes, have cleavable ester bonds in their backbone for hydrolytic degradation, stereogenic centres in the monomers units for controlling the macromolecular structure. bioassimilable or non-toxic repeating units and lateral chemical functions which can be adapted to specific requirements. The strategy for building such complex architectures, with one or several specific pendant groups, is based on the anionic ring-opening polymerization or copolymerization of the large family of malolactonic and 3-alkylmalolactonic acid esters. Because we are able to control the monomer synthesis and the polymerization step, we have been able to prepare different degradable materials for the biomedical field, such as: degradable associating networks made up by the association of random copolyesters containing a small percentage of hydrophobic moieties and beta-cyclodextrin copolymers; degradable macromolecular micelles constituted by degradable amphiphilic block copolymers of poly(beta-malic acid) as hydrophilic segments and poly(beta-alkylmalic acid alkyl esters) as hydrophobic blocks; and degradable nanoparticles made up by hydrophobic poly(beta-malic acid alkyl esters) derivatives. We have also prepared a terpolymer which exhibits growth factor-like properties in vivo. Finally, poly(beta-malic acid) has been used as an additive in the preparation of peritoneal dialysis bags.  相似文献   

11.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,广泛应用于医药、化工、食品及化妆品等行业,同时1,3-PD是合成聚对苯二甲酸丙二酯(PTT)的重要单体,市场需求量逐年增多。基于生态友好型、生产安全和可持续发展的要求,利用微生物转化可再生资源来生产1,3-PD受到了人们的广泛重视。综述了微生物发酵法生产1,3-PD的菌株、代谢途径、发酵和下游分离工艺及其新进展,并对工业生产中利用生物技术生产1,3-PD的未来前景和挑战进行了探讨。  相似文献   

12.
Japanese new space agency (merger of NASDA, ISAS and NAL), JAXA (Japan Aerospace Exploration Agency) has been developing the Plant Experiment Unit (PEU) and the Cell Experiment Unit (CEU), which will be used within the Cell Biology Experiment Facility (CBEF) in "Kibo" Japanese Experiment Module (JEM) of ISS. They can also be operated within the Clean Bench (CB) in Kibo. We report the preliminary results of ground based verification experiments using the PEU and the CEU. Six units of PEU/CEU in microgravity section and 4 units of PEU/CEU in control-g section, will be operated within CBEF.  相似文献   

13.
Lactate-based chemicals and polymers including poly(lactic acid) (PLA) are highly valuable materials for biomedical, food and general-purpose applications. Chemical synthesis, albeit the high reaction velocities achieved with it, often leaves chemical residues that are subject to health and safety concerns. Alternative biosynthesis is preferred in order to overcome these problems. Herein we report a novel enzymatic synthesis for the preparation of beta-d-galactosyl-l-lactic acid ethyl ester (GLAEE). Such a product, which may find applications in food and personal care products, is generally difficult to synthesize via traditional chemical routes because the reactions have to be highly selective due to the multiple hydroxyl groups of sugars. We further explore the enzymatic polymerization of GLAEE to form a unique biopolymer, poly(beta-d-galactoside-co-l-lactic acid) (PGLA). Novozyme 435 was found efficient in catalyzing the polymerization reaction in acetone with a conversion yield of 60% within 100 h. The molecular weight of the polymer product ranged from about 800-2000 as analyzed by using ESI-MS. It is expected that a variety of sugar-hydroxyl acids copolymers can be prepared through the same approach and a new class of biomaterials can thus be developed.  相似文献   

14.
Synthetic leaflet heart valves have been widely studied as possible alternatives to the current mechanical and bioprosthetic valves. Assessing the in vitro hydrodynamic function of these prostheses is of great importance to predict their hemodynamic behaviour prior to implantation. This study introduces an innovative concept of a low-profile semi-stented surgical aortic valve (SSAV) made of a novel nanocomposite polyurethane with a polycarbonate soft segment (PCU) and polyhedral oligomeric silsesquioxane (POSS) nanoparticles covalently bonded as a pendant cage to the hard segment. The POSS–PCU is already used in surgical implants, including lacrimal duct, bypass graft, and recently, a tracheal replacement. Nine valves of three leaflet thicknesses (100, 150 and 200 μm) and 21 mm internal diameter were prepared using an automated dip-coating procedure, and assessed in vitro for their hydrodynamic performance on a pulse duplicator system. A commercially available porcine bioprosthetic valve (Epic?, St. Jude Medical) of equivalent size was selected as a control model. Compared to the bioprosthetic valve, the SSAVs showed a considerably lower transvalvular pressure drop and larger effective orifice area (EOA). They were also characterised by a lower systolic energy loss, especially at high cardiac outputs. The leaflet thickness was found to significantly affect the hydrodynamics of these valves (P<0.01). The SSAVs with 100 μm leaflets demonstrated improved flow characteristics compared to the bioprosthetic valve. The enhanced hydrodynamic function of the SSAV suggests that the proposed design together with the advanced POSS–PCU material can represent a significant step towards the introduction of polyurethane valves into the clinical application.  相似文献   

15.
A tri-block-coupling polymer, "PEO-MDI-PEO" ["poly(ethylene oxide)-4,4'-methylene diphenyl diisocyanate-poly(ethylene oxide)", abbreviated "MPEO"], was used to react with a triazine dye, Cibacron Blue F3G-A (ciba), in an alkaline environment. The product of this nucleophilic reaction was a penta-block-coupling polymer, "ciba-PEO-MDI-PEO-ciba" (abbreviated "cibaMPEO"). The cibaMPEO-modified poly(ether urethane) (PEU) surfaces were prepared by dip-coating and detected by XPS. The surface enrichment of both ciba endgroups and poly(ethylene oxide) spacer-arms was revealed. On the modified surfaces, bovine serum albumin (BSA)-adsorbing experiments were carried out, respectively, in the low and high BSA bulk-concentration solutions, and accordingly, the methods of radioactive (125)I-probe and ATR-FTIR were, respectively, employed for the characterization. The competitive adsorption of BSA and bovine serum fibrinogen (Fg) in the BSA-Fg binary solutions was also studied using a (125)I-probe, and through which the reversibly BSA-selective adsorption on cibaMPEO-modified PEU surfaces was confirmed. Finally, the improvement of blood-compatibility on the modified surfaces was verified by the plasma recalcification time (PRT) test.  相似文献   

16.
The present study describes the synthesis of different mole densities of poly(propylene glycol)dimethacrylate cross-linked resins using monomer units such as styrene and 4-chloromethyl styrene and its evaluation as an ideal support toward different stages of solid-phase peptide synthesis. Free radical generated aqueous suspension polymerization has been followed for polymerization and the formation of resin was characterized using infrared and carbon-13 spectroscopic techniques. Surface morphology of resin was examined by scanning electron microscopy. The polymerization reaction was investigated with respect to the effect of amount of cross-linking agent to verify the swelling, loading, and the mechanical stability of resin. Solvent imbibition abilities in commonly used solvents were measured and compared to commercially available Merrifield as well as reported styrene-acryloyloxyhydroxypropyl methacrylate-tripropyleneglycol diacrylate (SAT resins. The chemical inertness of the support was also checked with different reagents used for solid-phase peptide synthesis. The suitability of support was demonstrated by synthesizing biologically potent Endothelin class of linear peptides by Fmoc strategy and compared to SAT resin. The purities of synthetic peptides were analyzed by high-performance liquid chromatography and corresponding masses by matrix-assisted laser desorption/ionisation-time of flight analysis.  相似文献   

17.
While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment‐friendly way. Biological synthesis of Pd nanoparticles (‘bio‐Pd’) is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio‐Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio‐Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio‐Pd in environmental technology are presented.  相似文献   

18.
Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence and, as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on ‘top-down’ and ‘bottom-up’ approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescence applications in chemical and biological fields. Finally, a brief overview of synthetic processes using the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.  相似文献   

19.
Nanoscale iron particles have attracted substantial interest due to their unique physical and chemical properties. Over the years, various physical and chemical methods have been developed to synthesize these nanostructures which are usually expensive and potentially harmful to human health and the environment. Synthesis of iron nanoparticles (INPs) by using plant extract is now of great interest in order to develop a novel and sustainable approach toward green chemistry. In this method the chemical compounds and organic solvents are replaced with phytochemicals and aqueous matrixes, respectively. Similar to any chemical and biochemical reaction, factors such as reaction temperature, concentration of iron precursor, concentration of leaf extract, and reaction time have critical effects on the reaction yield. This review focuses on the novel approaches used for green synthesis of INPs by using plant resources. The currently available statistics including the factors affecting the synthesis process and potential applications of the fabricated nanoparticles are discussed. Recommendations are also given for areas of future research in order to improve the production process.  相似文献   

20.
In this paper, we describe that amylose almost selectively includes poly(tetrahydrofuran) (PTHF) from a mixture of poly(oxetane) (POXT) and PTHF having resemblant chemical structures and molecular weights in vine-twining polymerization. This was performed by the phosphorylase-catalyzed enzymatic polymerization of alpha-D-glucose 1-phosphate from maltoheptaose as a primer in the presence of a mixture of POXT and PTHF to produce an amylose-PTHF inclusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号