首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

2.
The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by L-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:L-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for L-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:L-malate CoA transferase forms a large (alphabeta)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + L-malate --> succinate + L-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts L-citramalate instead of L-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle.  相似文献   

3.
The systemic fungicide carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) at 100 mum inhibited succinate cytochrome c reductase in mitochondria from Ustilago maydis and Saccharomyces cerevisiae. It did not have any effect on reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase. Succinate coenzyme Q reductase was also inhibited, but NADH coenzyme Q reductase was not. When dichlorophenolindophenol (DCIP) was used as the terminal acceptor of electrons from the oxidation of succinate, carboxin was very effective in inhibiting succinate-DCIP reductase. Carboxin was inhibitory to succinic dehydrogenase assayed with phenazine methosulfate plus DCIP when intact mitochondria were used as the enzyme source but not when solubilized enzyme was used. The main site of action of carboxin, therefore, appears to lie between succinate and coenzyme Q. The dioxide analogue of carboxin was also effective in inhibiting succinate-cytochrome c reductase, succinate-coenzyme Q reductase, or succinate-DCIP reductase, whereas the monoxide analogue was less effective in inhibiting these enzymes.  相似文献   

4.
SUCCINATE DEHYDROGENASE (SUCCINATE: phenazine methosulfate oxidoreductase, EC 1.3.99.1) activity in crude mitochondrial fraction from pea (var. Alaska) cotyledons increased during seed imbibition to reach a maximum after about 12 hours. The increase was not inhibited by either cycloheximide or d(-)threo-chloramphenicol. The postmicrosomal fraction from dry cotyledons, but not that from fully imbibed ones, contained a soluble form of succinate dehydrogenase. The soluble enzyme was partially purified by ammonium sulfate fractionation and diethylaminoethyl-cellulose and Sepharose 6B column chromatography. The enzyme showed no succinate-coenzyme Q oxidoreductase activity and had a molecular mass of about 100,000 daltons. The soluble enzyme seemed to differ only slightly from succinate dehydrogenase solubilized from the mitochondrial inner membrane from fully imbibed cotyledons by a detergent. It is proposed that the soluble succinate dehydrogenase is associated with an inert mitochondrial inner membrane in dry cotyledons to form an active one during seed imbibition.  相似文献   

5.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

7.
The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to beta-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA --> d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route.  相似文献   

8.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

9.
Chicken muscle triose phosphate isomerase was immobilised by attachment to Sepharose 4B. The immobilised dimeric enzyme was dissociated with guanidinium chloride to yield bound monomeric triose phosphate isomerase. This regained activity on removal of the denaturant, showing that isolated monomers possess activity; the apparent Km of the immobilished subunits was the same as that of the immobilised dimers. Under appropriate conditions, it was possible to rehybridise the immobilised monomers to native dimers, and also to form a hybrid dimer from the chicken muscle and rabbit muscle enzymes.  相似文献   

10.
The EE and SS isozymes of horse liver alcohol dehydrogenase have been immobilized separately to weakly CNBr-activated Sepharose 4B. The resulting immobilized dimeric preparations lost practically all of their activity after treatment with 6 M urea. However, enzyme activity was regenerated by allowing the urea-treated Sepharose-bound alcohol dehydrogenase to interact specifically with either soluble subunits of dissociated horse liver alcohol dehydrogenase or soluble dimeric enzyme. The regeneration of steroid activity in the immobilized preparations after treatment of the bound S subunits with soluble E subunits seems to show that true reassociation of the enzyme had taken place on the solid phase, since only isozymes with an S-polypeptide chain are active when using 5 beta-dihydrotestosterone as substrate. The results presented in this paper indicate that immobilized single subunits of horse liver alcohol dehydrogenase are inactive and that dimer formation is a prerequisite for the enzymic activity.  相似文献   

11.
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.  相似文献   

12.
Immobilization of pigeon breast muscle alpha-ketoglutarate dehydrogenase on CNBr-activated Sepharose 4B was carried out. Conditions for dissociation of the dimeric enzyme bound to the carrier via a single subunit were determined. Immobilized enzyme monomers with a specific activity higher than that of the dimer were obtained. The immobilized subunits are capable of reassociating with the soluble ones; this is accompanied by the restoration of the initial amount of the matrix-bound protein and the reconstitution of the activity typical of the immobilized enzyme original preparations.  相似文献   

13.
Many invertebrates accumulate propionate, or products derived from propionate, as products of fermentation. Evidence has been reported that the nematode, Ascaris suum, the cestode, Spirometra mansonoides, and the trematode, Fasciola hepatica, accumulate propionate by means of an adenosine triphosphate (ATP)-generating decarboxylation of succinate. To generate energy, an acyl coenzyme A (CoA) transferase that would transfer CoA to succinate is required as one component of the sequence of reactions. Recently, an acyl CoA transferase was isolated from Ascaris mitochondria and purified to electrophoretic homogeneity. However, upon examination of the substrate specificities of this enzyme, it was found essentially to lack the ability to use succinate or succinyl CoA as an acceptor or donor of CoA, respectively. Therefore, this transferase could not serve to activate succinate. This article describes the isolation of an additional acyl CoA transferase from Ascaris mitochondria that appears to be unique in its substrate specificity and that could easily account not only for the activation of succinate but also for the regulation of succinate metabolism primarily in the direction of decarboxylation to propionate. This is in contrast with mammalian tissues, which act in the opposite direction by catalyzing the fixation of CO2 into propionate, thereby forming succinate and accounting for the glycogenic nature of dietary propionate. Possible functions of the two acyl CoA transferases are discussed.  相似文献   

14.
A homogenous and crystalline form of nucleotide pyrophosphatase (EC 3.6.1.9) fromPhaseolus aureus (mung bean) seedlings was used for the study of the regulation of enzyme activity by adenine nucleotides. The native dimeric form of the enzyme had a helical content of about 65% which was reduced to almost zero values by the addition of AMP. In addition to this change in the helical content, AMP converted the native dimer to a tetramer. Desensitization of AMP regulation, without an alteration of the molecular weight, was achieved either by reversible denaturation with 6 M urea or by passage through a column of Blue Sepharose but additionofp-hydroxymercuribenzoate desensitized the enzyme by dissociating the native dimer to a monomer. The changes in the quaternary structure and conformation of the enzyme consequent to AMP interaction or desensitization were monitored by measuring the helical content, EDTA inactivation and Zn2+ reactivation, stability towards heat denaturation, profiles of urea denaturation and susceptibility towards proteolytic digestion. Based on these results and our earlier work on this enzyme, we propose a model for the regulation of the mung bean nucleotide pyrophosphatase by association-dissociation and conformational changes. The model emphasizes that multiple mechanisms are operative in the desensitization of regulatory proteins.  相似文献   

15.
1. Frog epidermis tyrosinase was coupled to Sepharose activated with low concentrations of CNBr. The tetrameric form of the enzyme was linked to the matrix via its subunits. Dissociation of the bound active enzyme with guanidinium chloride yielded an active immobilized dimeric derivative. 2. Immobilized dimeric derivative was able to interact with soluble subunits formed transiently during renaturation. An 85% recovery of the native dopa oxidase specific activity was achieved after hybridization. 3. Fluorescence spectra of different immobilized derivatives suggested that tryptophan residues were involved in the interactions between tyrosinase subunits. 4. It is suggested that the activation of the subunits of tyrosinase involves a conformational change towards a more unfolded state, which favours a reassociation to the dimeric active state.  相似文献   

16.
Formyl-coenzyme A transferase from Oxalobacter formigenes belongs to the Class III coenzyme A transferase family and catalyzes the reversible transfer of a CoA carrier between formyl-CoA and oxalate, forming oxalyl-CoA and formate. Formyl-CoA transferase has a unique three-dimensional fold composed of two interlaced subunits locked together like rings of a chain. We here present an intermediate in the reaction, formyl-CoA transferase containing the covalent beta-aspartyl-CoA thioester, adopting different conformations in the two active sites of the dimer, which was identified through crystallographic freeze-trapping experiments with formyl-CoA and oxalyl-CoA in the absence of acceptor carboxylic acid. The formation of the enzyme-CoA thioester was also confirmed by mass spectrometric data. Further structural data include a trapped aspartyl-formyl anhydride protected by a glycine loop closing down over the active site. In a crystal structure of the beta-aspartyl-CoA thioester of an inactive mutant variant, oxalate was found bound to the open conformation of the glycine loop. Together with hydroxylamine trapping experiments and kinetic as well as mutagenesis data, the structures of these formyl-CoA transferase complexes provide new information on the Class III CoA-transferase family and prompt redefinition of the catalytic steps and the modified reaction mechanism of formyl-CoA transferase proposed here.  相似文献   

17.
D Parke  F Rynne    A Glenn 《Journal of bacteriology》1991,173(17):5546-5550
In members of the family Rhizobiaceae, many phenolic compounds are degraded by the protocatechuate branch of the beta-ketoadipate pathway. In this paper we describe a novel pattern of induction of protocatechuate (pca) genes in Rhizobium leguminosarum biovar trifolii. Isolation of pca mutant strains revealed that 4-hydroxybenzoate, quinate, and 4-coumarate are degraded via the protocatechuate pathway. At least three inducers govern catabolism of 4-hydroxybenzoate to succinyl coenzyme A and acetyl coenzyme A. The enzyme that catalyzes the initial step is induced by its substrate, whereas the catabolite beta-carboxy-cis,cis-muconate induces enzymes for the upper protocatechuate pathway, and beta-ketoadipate elicits expression of the enzyme for a subsequent step, beta-ketoadipate succinyl-coenzyme A transferase. Elucidation of the induction pattern relied in part on complementation of mutant Rhizobium strains by known subclones of Acinetobacter genes expressed off the lac promoter in a broad-host-range vector.  相似文献   

18.
A succinate-coenzyme Q reductase (complex II) was isolated in highly purified form from Ascaris muscle mitochondria by detergent solubilization, ammonium sulfate fractionation and gel filtration on a Sephadex G-200 column. The enzyme preparation catalyzes electron transfer from succinate to coenzyme Q1 with a specific activity of 1.2 mumol coenzyme Q1 reduced per min per mg protein at 25 degrees C. The isolated complex II is essentially free of NADH-ferricyanide reductase, reduced CoQ2-cytochrome c reductase and cytochrome c oxidase and consists of four major polypeptides with apparent molecular weights of 66 000, 27 000, 12 000 and 11 000 and two minor ones with Mr of 36 000 and 16 000. The complex II contained cytochrome b-558, a major constituent cytochrome of Ascaris mitochondria, at a concentration of 3.6 nmol per mg protein, but neither other cytochromes nor quinone. The cytochrome b-558 in the complex II was reduced with succinate. In the presence of Ascaris NADH-cytochrome c reductase (complex I-III) (Takamiya, S., Furushima, R. and Oya, H. (1984) Mol. Biochem. Parasitol. 13, 121-134), the cytochrome b-558 in complex II was also reduced with NADH and reoxidized with fumarate. These results suggest the cytochrome b-558 to function as an electron carrier between NADH dehydrogenase and succinate dehydrogenase in the Ascaris NADH-fumarate reductase system.  相似文献   

19.
An acyl CoA transferase has been purified to electrophoretic homogeneity from the soluble compartment of Ascaris suum muscle mitochondria. From SDS-PAGE, isoelectric focusing and molecular exclusion chromatography, homogeneity was confirmed and the enzyme appears to be composed of two similar or identical subunits of apparent mol. wts of 50,000 resulting in an apparent mol. wt of 100,000 for the holoenzyme. The apparent isoelectric point was 5.6 +/- 0.1 by both chromatofocusing columns and slab gel isoelectric focusing. The transferase was relatively specific for the short, straight-chain acyl CoA donors as well as the CoA acceptors, being active on acetyl CoA, propionyl CoA, butyryl CoA, valeryl CoA and hexanoyl CoA as donors to acetate and propionate. Neither succinyl CoA nor succinate were appreciably active as CoA donor or acceptor, respectively. This enzyme cannot serve physiologically to activate succinate for decarboxylation to propionate, but may serve to ensure a supply of propionyl CoA which appears to be required in catalytic amounts for the decarboxylation of succinate.  相似文献   

20.
Malate thiokinase has been purified to apparent homogeneity by employing conventional purification techniques along with affinity chromatography. The enzyme is composed of two nonidentical subunits (alpha subunit Mr=34,000, beta subunit Mr=42,500) to yield an alpha 4 beta 4 structure for the native enzyme. Phosphorylation of the enzyme by ATP occurs exclusively on the alpha subunit. The phosphorylated enzyme is acid labile and base stable consistent with phosphorylation of a histidine residue. Dephosphorylation of the enzyme is promoted by ADP, succinate, malate, and coenzyme A plus inorganic phosphate. Phosphorylation of the enzyme leads to a reversible change in the sedimentation properties of the enzyme; the native enzyme exhibits an S20,w of approximately 10, whereas the phosphoenzyme exhibits an S20,w of approximately 7. Formation of the 7 S form of the enzyme is also observed when coenzyme A and succinyl-CoA interact with the enzyme. The ratio of alpha to beta subunits in both the 10 S and 7 S forms of the enzyme is approximately 1.0, suggesting that the 7 S form of the enzyme has an alpha 2 beta 2 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号