首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of low dietary rubidium on plasma biochemical parameters and mineral levels in tissues in rats were studied. Eighteen male Wistar rats, weighing about 40 g, were divided into two groups and fed the diets with or without supplemental rubidium (0.54 vs 8.12 mg/kg diet) for 11 wk. Compared to the rats fed the diet with supplemental rubidium, the animals fed the diet without rubidium supplementation had higher urea nitrogen in plasma; lower rubidium concentration in tissues; lower sodium in muscle; higher potassium in plasma, kidney and tibia, and lower potassium in testis; lower phosphorus in heart and spleen; lower calcium in spleen; higher magnesium in muscle and tibia; higher iron in muscle; lower zinc in plasma and testis; and lower copper in heart, liver, and spleen, and higher copper in kidney. These results suggest that rubidium concentration in tissues reflects rubidium intake, and that rubidium depletion affects mineral (sodium, potassium, phosphorus, calcium, magnesium, iron, zinc, and copper) status.  相似文献   

2.
Animal studies have shown that potassium depletion induced by diuretics or potassium deficient fodder leads to a selective decrease in the concentrations of potassium and in the concentration of sodium-potassium pumps in skeletal muscle. In 25 patients who had received diuretics for 2-14 years the mean concentrations of potassium, magnesium, and sodium-potassium pumps were measured in skeletal muscle biopsy specimens and were significantly lower than in those from a group of age matched controls. The reductions in all three variables were significant in those patients receiving diuretics for arterial hypertension as well as in those being treated for congestive heart failure. In 14 patients the mean muscle potassium concentration was below the control range, but only one of those was hypokalaemic (3·4 mmol/l), and 13 were receiving potassium supplements. In 15 patients the mean muscle magnesium concentration was below normal, and the mean muscle potassium and magnesium concentrations showed a linear correlation. In 12 patients in whom the mean muscle potassium concentration was below 80 μmol/g wet weight there was a linear correlation between the cellular potassium:sodium ratio and the concentration of 3H-ouabain binding sites indicating that potassium deficiency also leads to a down regulation of sodium-potassium pumps in human skeletal muscle.In spite of potassium supplements long term treatment with diuretics may lead to potassium and magnesium deficiencies, which are not detectable using the standard methods of serum analysis. The changes in concentrations of electrolytes and sodium-potassium pumps associated with treatment with diuretics may impair muscle function and potassium homoeostasis and interfere with the distribution of digitalis glycosides.  相似文献   

3.
1. The total acid-soluble carnitine concentrations of four tissues from Merino sheep showed a wide variation not reported for other species. The concentrations were 134, 538, 3510 and 12900nmol/g wet wt. for liver, kidney cortex, heart and skeletal muscle (M. biceps femoris) respectively. 2. The concentration of acetyl-CoA was approximately equal to the concentration of free CoA in all four tissues and the concentration of acid-soluble CoA (free CoA plus acetyl-CoA) decreased in the order liver>kidney cortex>heart>skeletal muscle. 3. The total amount of acid-soluble carnitine in skeletal muscle of lambs was 40% of that in the adult sheep, whereas the concentration of acid-soluble CoA was 2.5 times as much. A similar inverse relationship between carnitine and CoA concentrations was observed when different muscles in the adult sheep were compared. 4. Carnitine was confined to the cytosol in all four tissues examined, whereas CoA was equally distributed between the mitochondria and cytosol in liver, approx. 25% was present in the cytosol in kidney cortex and virtually none in this fraction in heart and skeletal muscle. 5. Carnitine acetyltransferase (EC 2.3.1.7) was confined to the mitochondria in all four tissues and at least 90% of the activity was latent. 6. Acetate thiokinase (EC 6.2.1.1) was predominantly (90%) present in the cytosol in liver, but less than 10% was present in this fraction in heart and skeletal muscle. 7. In alloxan-diabetes, the concentration of acetylcarnitine was increased in all four tissues examined, but the total acid-soluble carnitine concentration was increased sevenfold in the liver and twofold in kidney cortex. 8. The concentration of acetyl-CoA was approximately equal to that of free CoA in the four tissues of the alloxan diabetic sheep, but the concentration of acid-soluble CoA in liver increased approximately twofold in alloxan-diabetes. 9. The relationship between CoA and carnitine and the role of carnitine acetyltransferase in the various tissues is discussed. The quantitative importance of carnitine in ruminant metabolism is also emphasized.  相似文献   

4.
Sexual dimorphism in potassium content was found in plasma, kidney, heart and skeletal muscle of CD1 mice. We observed that feeding mice with a K(+)-deficient diet had an uneven and gender-dependent effect on organ weight and tissue potassium concentrations. Treatment produced a marked decrease in plasma, pancreas and skeletal muscle K(+) levels in both sexes, and a reduction in kidney, liver and heart potassium concentrations in females. Moreover, K(+) deficiency produced a 2-3-fold increase in the concentrations of cationic amino acids, such as arginine and lysine in both heart and skeletal muscle of the two sexes, a slight increase ( approximately 37%) in renal arginine in the male mice. The concentrations of these amino acids in plasma and other tissues in both sexes remained unaltered. Polyamine levels in heart, liver, skeletal muscle and pancreas from male and female mice were not affected by K(+) deficiency. However, in the male kidney potassium deficiency was accompanied by an increase of putrescine and spermidine concentration, and a reduction of putrescine excretion into the urine, even though renal K(+) concentration was not significantly affected and ornithine decarboxylase activity was dramatically decreased. The general lack of correlation between tissue potassium decrease and the increase in organic cations suggests that it is unlikely that the changes observed could be related with an attempt of the tissues to compensate for the reduction in cellular positive charge produced by the fall in K(+) content. The mechanisms by which these changes are produced are discussed, but their physiological implications remain to be determined.  相似文献   

5.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

6.
Glucose and octanoate utilization by isolated adult rat heart cells   总被引:1,自引:0,他引:1  
M R Glick  A H Burns  W J Reddy 《Life sciences》1974,14(8):1473-1485
Rat heart muscle cells continue to beat in the isolated state apparently independent of any innervation. The oxidation of 14C-glucose to 14CO2 was linear for at least 60 minutes of incubation. The rate of glucose oxidation rose rapidly up to a medium glucose concentration of 2.5 mM and then plateaued. Lactate production reached a maximum at 5 mM glucose. Glucose uptake was linearly related to the concentration up to 40 mM. The addition of octanoate reduced, but did not eliminate, glucose oxidation. Octanoate utilization increased with increasing concentration and reached a maximum at 2 mM. The oxidation of octanoate was linearly related to the time of incubation for at least 90 minutes. The presence of glucose, at a concentration of 1.25 mM or higher, increase the oxidation of octanoate by the heart cells. The metabolic parameters measured with the isolated heart cells gave values comparable to those obtained with the perfused rat heart. Decreasing or increasing the concentration of sodium, potassium or magnesium did not effect the oxidation of either glucose or octanoate with the exception that when sodium was increased above 200 mM, a significant increase in glucose oxidation was observed. In contrast, the addition of calcium to a calcium free medium increased glucose oxidation, reaching a maximum at 0.2 mM calcium. The oxidation of octanoate reached a maximum at 0.2 mM and then decreased significantly with increasing calcium concentration. The metabolic activity appears to be independent of the concentration of sodium, potassium or magnesium. In contrast, the isolated heart cell is very sensitive to a change in calcium concentration.  相似文献   

7.
The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.  相似文献   

8.
Exchangeable sodium and potassium, total body water, and sulphate space were measured in 42 patients with severe valvular heart disease who were free of oedema. Compared with normal subjects of the same height, no increase in exchangeable sodium was found but a mean potassium depletion of 27% was shown. This depletion was not related to diuretic therapy, and no relationship between the degree of depletion and postoperative arrhythmias was found. It is concluded that the major cause of the low exchangeable potassium is the reduction in cell mass that occurs in chronic heart disease, and that there is no significant fall in the intracellular potassium concentration.  相似文献   

9.
Age-related changes in the content of the major cellular cations of potassium and sodium in heart muscle cells of Wistar rats have been studied. The cytoplasmic concentration of potassium and sodium was determined by the electron probe microanalysis. The results revealed differences in both the concentration of the elements in young and old control animals and the responses of a cardiomyocyte to the state of acute hypoxic deenergization modelled on a perfused heart. The data are consistent with the hypothesis about the presence of genetically-related age changes in the conductance of potassium channels, which in old animals are realized against the background of deficient supply of tissues with oxygen and substrate.  相似文献   

10.
App AA  Gerosa MM 《Plant physiology》1966,41(9):1420-1424
The requirements for the transfer of (14)C-phenylalanine from yeast soluble ribonucleic acid to protein in vitro by rice (Oryza sativa L. var. Bluebonnet) ribosomes have been investigated. An absolute requirement for polyuridylic acid, 2-mercaptoethanol, guanosine triphosphate, magnesium, and potassium or ammonium ions and ribosomes has been demonstrated. Ribosomes washed in 0.5% sodium deoxycholate also required the presence of rice supernatant. The optimum concentration of magnesium ion for the reaction was approximately 7 mm, while 60 mm of either ammonium or potassium ion gave maximum transfer of phenylalanine in this heterologous system. The optimum concentration of guanosine triphosphate required varied with the presence or absence of the phosphoenolpyruvate-pyruvate kinase generating system. Without the system, the optimum concentration was 1.5 mm, but in its presence the optimum was approximately 0.1 mm.  相似文献   

11.
To clarify the effect of aging on the mineral status of female mice, mineral concentrations in their tissues were determined. Five 2-mo-old, five 6-mo-old, and five 10-mo-old female B10BR mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, sodium, and potassium concentrations in the blood, liver, kidney, heart, brain, lung, and spleen of the mice were determined using a flame atomic absorption spectrophotometer. Iron concentrations in the liver, kidney, heart, brain, and spleen increased with age. Significant differences were detected between mice 2 and 6 mo of age and between mice 2 and 10 mo of age. Zinc concentrations in the heart and lung decreased significantly with age. Zinc concentrations in the heart and lung of 10-mo-old mice were significantly lower than those of 2-mo-old mice. It is noteworthy that the copper concentration in the brain of 10-mo-old mice was markedly higher compared with that of younger mice. Calcium accumulation was apparent in the kidney of mice at 10 mo.  相似文献   

12.
1. Frog muscles perfused with Ringer solution in which potassium chloride has been replaced by an equivalent amount of rubidium or cesium chloride take up rubidium or cesium and incorporate them into the tissue substance in such form as to be retained during a subsequent perfusion with potassium-free Ringer solution, provided the muscles contract during the first perfusion. Retention of rubidium or cesium by a resting muscle does not occur. 2. Rats on synthetic diets, adequate in all respects except that potassium was replaced by an equivalent amount of rubidium or cesium, died after a period varying from 10 to 17 days with characteristic symptoms including tetanic spasms. Muscle, heart, liver, kidney, spleen, and lung tissues were then found to contain significant amounts of rubidium or cesium. The concentration of these metals in the muscle amounted, in some cases, as shown by a spectroscopic estimation, to about half the concentration of potassium normally found in mammallian muscle. 3. The results are regarded as tending to confirm the theory that the peculiarities in the physiological effects of potassium, including the facility with which it is "selected" by living cells in preference to sodium, are related to the electronic structure of the potassium ion as compared with that of similar ions. The possible relationship of the comparative migration velocity, a function of the electronic structure, to physiological effects is suggested.  相似文献   

13.
The growth rate and magnesium concentration in scales, bone and muscle of freshwater tilapia, Oreochronüs mossambicus (Peters), initially weighing between 70 and 300 g, were followed during low-magnesium feeding. The growth rate decreased in fish on low-magnesium diets, but no changes were observed in the magnesium concentration in the scales, bone or muscle. No changes were observed in calcium or sodium concentrations in these tissues. We conclude that adult tilapia fed a low-magnesium diet manage, in contrast to other fish species, to maintain their magnesium balance and must therefore obtain magnesium from the water.  相似文献   

14.
Age-related changes in the concentrations of the main cations potassium and sodium in the cardiac muscle cell of Wistar rats were studied. The cytoplasmic concentrations of potassium and sodium were measured by electron probe microanalysis. The results obtained showed differences both in concentrations of the cations between young and old reference animals, and in the cardiomyocyte response to the state of acute hypoxic deenergization modeled on a perfused heart. The data obtained are consistent with the hypothesis of the presence of genetically determined age-related changes in the conductance of potassium channels, which occur in old animals against the background of short supply of oxygen and substrate to tissues.  相似文献   

15.
Selected tissues (skeletal muscle, heart ventrical, and liver), sampled from turtles (Chrysemys picta bellii) at 3°C either under normoxic conditions or after 12 weeks of anoxic submergence were quantiaatively analysed for intracellular pH and phosphorus metabolites using 31P-NMR. Plasma was tested for osmolality and for the concentrations of lactate, calcium, and magnesium to confirm anoxic stress. We hypothesized that, in the anoxic animals, tissue ATP levels would be maintained and that the increased osmolality of the body fluids of anoxic turtles would be accounted for by a corresponding increase in the concentrations of phosphodiesters. The responses observed differed among the three tissues. In muscle, ATP was unchanged by anoxia but phosphocreatine was reduced by 80%; in heart, both ATP and phosphocreatine fell by 35–40%. The reduction in phosphocreatine in heart tissue at 3°C was similar to that observed in isolated, perfused working hearts from turtles maintained at 20°C but no decrease in ATP occurred in the latter tissues. In liver, although analyses of several specimens were confounded by line-broadening, neither ATP nor phosphocreatine was detectable in anoxic samples. Phosphosdiesters were detected in amounts sufficient to account for 30% of normoxic cell osmotic concentration in heart and 11% and 12% in liver and muscle, respectively. The phosphodiester levels did not change in anoxia. Heart ventricular phosphodiester levels in turtles at 3°C were significantly higher than those determined for whole hearts from turtles at 20°C. 1H, 13C and 31P NMR analyses of perchloric acid extracts of heart and skeletal muscle from 20°C turtles con firmed that the major phosphodiester observed by NMR in these tissues is serine ethanolamine phosphate. We conclude that the three types of tissues studied differ substantially in their ability to maintain levels of ATP during anoxia, and that liver may continue to function despite NMR-undetectable levels of this metabolite. In addition, we conclude that phosphodiesters do not serve as regulated osmolytes during anoxia, and that the functional significance of their high concentrations in turtle tissues remains uncertain.  相似文献   

16.
The total activities (sum of active and inactive forms) of branched-chain 2-oxo acid dehydrogenase complex in tissues of normal rats fed on a standard diet were (unit/g wet wt.): liver, 0.82; kidney, 0.77; heart, 0.57; hindlimb skeletal muscles, 0.034. Total activity was decreased in liver by 9%- or 0%-casein diets and by 48 h starvation, but not by alloxan-diabetes. Total activities were unchanged in kidney and heart. The amount of active form of the complex (in unit/g wet wt. and as % of total) in tissues of normal rats fed on standard diet was: liver, 0.45, 55%; kidney, 0.55, 71%; heart, 0.03, 5%; skeletal muscle less than 0.007, less than 20% (below lower limit of assay). The concentration of the active form of the complex was decreased in liver and kidney, but not in heart, by low-protein diets, 48 h starvation and alloxan-diabetes. In heart muscle alloxan-diabetes increased the concentration of active complex. The concentration of activator protein (which activates phosphorylated complex without dephosphorylation) in liver and kidney was decreased by 70-90% by low-protein diets and 48 h starvation. Alloxan-diabetes decreased activator protein in liver, but not in kidney. Evidence is given that in tissues of rats fed on a normal diet approx. 70% of whole-body active branched chain complex is in the liver and that the major change in activity occasioned by low-protein diets is also in the liver.  相似文献   

17.
1. The distribution of thiol:protein-disulphide oxidoreductase (disulphide interchange enzyme) in 17 bovine tissue extracts was determined by rocket immunoelectrophoresis and by measuring the reductive cleavage of insulin. 2. The relative concentration (per mg total protein) was found to be in the order: Pancreas greater than liver greater than lymph node greater than testes, fat tissue greater than parotid gland, brain, spleen, lung greater than small intestine, spinal cord, large intestine, kidney greater than paunch, aorta greater than skeletal muscle greater than heart. 3. The distribution of specific activity showed a similar pattern, irrespectively of whether glutathione or L-cysteine was used as cosubstrate. 4. The concentration varied 200-fold and the specific activity 400-fold between pancreas and heart muscle, respectively. 5. Crossed immunoelectrophoresis demonstrated that a fast-migrating form of the enzyme was the only one present in almost all tissues, but 15% of the enzyme in liver was a slow-migrating form and 50% in heart muscle a medium-migrating form. 6. The lung contains a species having partial immunological identity to the enzyme. 7. Purified enzyme from bovine liver has a somewhat lower mobility than the fast-migrating form in extract. 8. The results seem to support the general view that the enzyme is involved in synthesis of disulphide-bonded extracellular proteins, although the presence of the enzyme in tissues like fat, brain, spinal cord, skeletal muscle and heart indicates other cellular functions as well.  相似文献   

18.
The effect of aging on the status of macrominerals and trace elements in tissues was studied using two strains (SAMP1 and SAMR1) of senescence accelerated mouse. Two-month-old, 6-mo-old, and 10-mo-old female SAMP1 and SAMR1 mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, phosphorus, sulfur, sodium, and potassium concentrations in blood, liver, kidney, brain, and tibia of the mice were determined. The copper concentration in the brain was significantly increased with age in SAMP1 and SAMR1. In addition, the brain copper levels in SAMP1 were significantly higher than that in SAMR1 at respective ages. The calcium concentration in the kidney was significantly increased with age, but the copper and phosphorus concentrations significantly decreased with age in SAMP1 and SAMR1. In the liver of SAMR1, all minerals measured in this study except for sodium and potassium were significantly decreased with age. In addition, all mineral concentrations in the liver of 2-mo-old mice in SAMR1 except for copper and sodium were markedly higher than those in SAMP1 of the same age. These results suggest that the genetic factor is related to the age-associated mineral changes in tissues.  相似文献   

19.
Chick embryos in ovo incorporated radioactivity from lysine-U-14C into myoglobin, as measured by an immunoprecipitation technique. The most consistent results were obtained by injection of the precursor into the yolk sac fluid.Incorporation, or apparent myoblobin synthesis, occurred in cardiac and skeletal muscle but not in liver, although incorporation of amino acid into total soluble proteins was equivalent in all tissues studied. Synthesis was highest in cardiac muscle and appeared there first in younger embryos. Myoglobin synthesis was detectable in the heart of embryos as early as 6 days of age and rose with age thereafter. Myoglobin synthesis appeared later and at lower levels in skeletal muscle.In vitro at neutral pH, tissue extracts of liver and muscle possessed only slight properties of myoglobin degradation.Using nonradioactive precipitin techniques, sensitive to 5–10 μg/ml, myoglobin was detected in embryonic heart muscle by week 2 of life and rose in content thereafter. Two of 8 embryos had trace amounts in thigh muscle near the time of hatching, and no embryos possessed measurable amounts of myoglobin in liver tissue or in pectoral skeletal muscle. Adult birds possessed equivalent amounts of myoglobin in heart and thigh muscle while pectoral muscle and liver tissue had no detectable myoglobin content.  相似文献   

20.
Deoxycorticosterone pivalate (2.5 mg/kg) given intramuscularly on four occasions 10-15 days apart over a period of 45 days to unilaterally nephrectomized adult male mongrel dogs, receiving as drinking solution 0.9% NaCl in 5% dextrose, resulted in an average sustained rise in the mean arterial blood pressure of 30 mm Hg (1 mm Hg - 133 N/m2) in 60% of the animals. Hypertensive dogs had in their arterial tissues generally more sodium, potassium, magnesium, and calcium than the similarly treated but non-hypertensive dogs, but compared to the tissues of operated untreated or unoperated normotensive dogs, only sodium and calcium were significantly higher. The dogs who were similarly treated but did not develop hypertension had in their arterial tissues less sodium, potassium, and magnesium than operated untreated or unoperated normotensive dogs. Norepinephrine content in the branches of mesenteric arteries of all deoxycorticosterone- and NaCl-treated animals, irrespective of their blood pressure, was significantly lower, and in the myocardium significantly higher, than either the unoperated normotensive or operated but not further treated dogs. It is concluded, therefore, that in deoxycorticosterone + NaCl treatment the dogs which developed hypertension had more arterial sodium, potassium, magnesium, and calcium than those who were similarly treated but remained within the limits of normal blood pressure, and that there was no difference between hypertensive and non-hypertensive dogs in regard to their cardiovascular norepinephrine content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号