首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Previously, the Yangtze River connected thousands of shallow lakes which together formed a potamo-lacustrine system capable of sustaining a rich variety of submerged macrophytes.
2.  Potamogeton malaianus is one of the dominant submerged macrophytes in many lakes of this area. Genetic variation and population structure of P. malaianus populations from ten lakes in the potamo-lacustrine system were assessed using inter-simple sequence repeat markers.
3. Twelve primer combinations produced a total of 166 unambiguous bands of which 117 (70.5%) were polymorphic. Potamogeton malaianus exhibited a moderate level of population genetic diversity ( P P = 70.5%, H E = 0.163 and I =  0.255), as compared with that of plants in the same habitat and range. The main factors responsible for this moderate value were the plant's mixed breeding system (both sexual and asexual) and the hydrological connectivity among habitats.
4.  F statistics, calculated using different approaches, consistently revealed a moderate genetic differentiation among populations, contributing about 20% of total genetic diversity. An estimate of gene flow (using F ST) suggested that gene flow played a more important role than genetic drift in the current population genetic structure of P. malaianus ( Nm  = 1.131).
5. The genetic diversity of P. malaianus did not increase downstream. A high level of linkage–disequilibrium at the whole population level suggested that metapopulation processes may affect genetic structure. The migration pattern of P. malaianus was best explained by a two-dimensional stepping stone model, indicating that bird-mediated dispersal could greatly influence gene movements among lakes.  相似文献   

2.
Aim  To explore the genetic and phylogeographic structure of a temperate forest species, Pinus strobiformis Englem., in a subtropical region in the context of climate change during the Pleistocene. It is expected that the colder conditions during glacial stages favoured range expansions of P. strobiformis , thus promoting gene flow.
Location  Mexico and the United States.
Methods  Estimates of genetic diversity and structure were obtained using chloroplast microsatellite loci of 23 populations of P. strobiformis across its entire range, seven neighbouring populations of Pinus ayacahuite Ehrenb. ex. Schtdl, and one population of Pinus flexilis James.
Results  The genetic diversity of P. strobiformis ( H e = 0.856) was found to be high, especially in western populations, whereas eastern populations were less variable and more genetically similar to P. ayacahuite of central Mexico. We found evidence of significant phylogeographic structure ( N ST = 0.444; P  =   0.026), high genetic structure ( R ST = 0.270), and isolation by distance. Pairwise R ST and samova (spatial analysis of molecular variance) results indicated an east–west partition of genetic variation, with populations within each group showing little differentiation and no isolation by distance.
Main conclusions  The phylogeographic structure of P. strobiformis across the entire range was pronounced, with two main genetic and geographic groups separated by the Chihuahuan Desert. However, within each of the two groups there was little population differentiation and no isolation by distance, suggesting genetic connectivity as a result of population expansions within these areas during glacial stages.  相似文献   

3.
Theory predicts that the impact of gene flow on the genetic structure of populations in patchy habitats depends on its scale and the demographic attributes of demes (e.g. local colony sizes and timing of reproduction), but empirical evidence is scarce. We inferred the impact of gene flow on genetic structure among populations of water voles Arvicola terrestris that differed in average colony sizes, population turnover and degree of patchiness. Colonies typically consisted of few reproducing adults and several juveniles. Twelve polymorphic microsatellite DNA loci were examined. Levels of individual genetic variability in all areas were high ( H O= 0.69–0.78). Assignments of juveniles to parents revealed frequent dispersal over long distances. The populations showed negative F IS values among juveniles, F IS values around zero among adults, high F ST values among colonies for juveniles, and moderate, often insignificant, F ST values for parents. We inferred that excess heterozygosity within colonies reflected the few individuals dispersing from a large area to form discrete breeding colonies. Thus pre-breeding dispersal followed by rapid reproduction results in a seasonal increase in differentiation due to local family groups. Genetic variation was as high in low-density populations in patchy habitats as in populations in continuous habitats used for comparison. In contrast to most theoretical predictions, we found that populations living in patchy habitats can maintain high levels of genetic variability when only a few adults contribute to breeding in each colony, when the variance of reproductive success among colonies is likely to be low, and when dispersal between colonies exceeds nearest-neighbour distances.  相似文献   

4.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

5.
Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations of Daphnia dentifera to determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations of D. dentifera for 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.  相似文献   

6.
One of the most promising hypotheses for the evolution of sex is that sexual reproduction is advantageous because it increases the rate of adaptive evolution in response to parasites. To investigate this advantage of sex, we compared genetic variation of geminiviruses infecting sexual and asexual populations of Eupatorium (Asteraceae). The infection frequency was 37.5% in the sexual population and 87.8% in the asexual population. The lower infection frequency in the sexual population might be the result of higher genetic diversity of host plants. If geminiviruses have diverged to counter defence systems of genetically variable hosts, genetic diversity of viruses is expected to be higher in sexual host populations than in asexual host populations. To test this expectation, we used single-strand conformation polymorphism (SSCP) analysis to examine genetic diversity of the geminiviruses in a DNA region containing the open-reading frame (ORF) C4 gene, which is known to function as a host range determinant. As predicted, higher genetic diversity of viruses was observed in the sexual population: three SSCP types were found in the asexual population while six types were found in the sexual population. Sequencing of the polymerase chain reaction (PCR) products revealed further genetic diversity. Phylogenetic analysis of the sequences showed that the SSCP types belonged to four different clades. Several SSCP types from the same clade were found in the sexual population, whereas the asexual population included only one SSCP type from each clade. Amino acid replacements of ORF C4 are suggested to be accelerated in the sexual population. This evidence supports the hypothesis that sexual reproduction is advantageous as a defence against epidemic disease.  相似文献   

7.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

8.
有性生殖对栗疫病菌群体结构的影响   总被引:1,自引:0,他引:1  
采用RAPD方法对来源于栗疫病菌8个不同子囊壳的子囊孢子后代和无性生殖的对照群体各23个菌株进行了群体结构的比较。从RAPD随机引物中筛选出扩增多态性丰富的4条引物,共扩增出条带73条,多态性检测率为100%。研究结果表明,在8个子囊壳和无性生殖群体中的基因多样性,64.27%由群体内部引起,只有35.73%的多样性由群体之间的基因差异引起。各子囊壳群体间存在的基因流动很小(Nm=0.8994)。有性群体和无性群体之间的遗传距离为0.1389,基因流动值为3.4212,说明子囊壳群体和无性生殖群体之间存在一定的系统关系。分析表明栗疫病菌子囊孢子后代在自然界的传播对自然界的病菌的多样性起重要的作用。  相似文献   

9.
Abstract: The biennial Gentianella austriaca (A. & J. Kern.) Holub, representing a nutrient-poor grassland taxon of low competition power, is becoming rare in the lowlands of eastern Austria due to changes in land use. To estimate effects of isolation and decreasing population sizes, as well as evolutionary relationships, we investigated variation in isozymes and morphological characters within and between seven populations from the mountains, foothills, and lowlands. Additionally, data on reproduction, habitat, germination and population sizes were collected to examine possible causes of variation and differentiation. We found highest genetic diversity (va, vgo) in the lowland and foothill populations, and highest genetic differentiation (Dja, Djgo) (i.e., lowest genetic identity: Nei's I) in the lowland populations. The low diversity of the mountain populations might indicate that they are derived from lowland populations. Surprisingly, highest genetic diversity was found in the smallest population. This indicates that in small remnant populations of taxa with a mixed mating system, genetic diversity might be maintained even after many generations after reducing population size dramatically. We found some relationship between genetic diversity and high fitness (germination success) and (inversely) with seed size. Plant size and reproductive success are negatively correlated with altitude, whereas flower size and seed size seem to be subject to other forces of selection. Combining all morphometric, reproductive and genetic traits, the lowland populations are most strongly differentiated and therefore of highest conservation priority.  相似文献   

10.
Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness. Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies.  相似文献   

11.
Populations of Allium vineale commonly include individuals with very different allocation patterns to three modes of reproduction: sexual flowers, aerially produced asexual bulbils, and belowground asexual offsets. If selection is currently acting to maintain these different allocation patterns there must be a genetic basis for variation in allocation to these three reproductive modes. In addition, negative genetic correlations between reproductive traits would imply evolutionary trade-offs among reproductive strategies. We evaluated the heritability of these allocation patterns by growing 16 clones from a single population in the greenhouse at two levels of fertilization. Bulb mass and the mass and number of bulbils, offsets, and flowers were used as response variables, in addition to the proportion allocated to each reproductive mode. We found evidence of substantial heritable variation in allocation to sexual reproduction and in allocation within the two modes of asexual reproduction, indicating high sensitivity of these allocation patterns to natural selection. We also found evidence of strong negative genetic correlations between bulbil and flower traits, as well as between bulbil and offset traits, with one group of genotypes allocating greater resources to aerial asexual bulbils and the second group allocating more resources to belowground asexual offsets and aerial flowers. Phenotypic plasticity in allocation to above- vs. belowground asexual reproduction and sexual vs. asexual aerial reproduction was limited, indicating that plants are unlikely to change reproductive mode in response to nutrient availability. Together, then, we have demonstrated strong heritability for, and trade-offs in, the reproductive allocation patterns within this plant population.  相似文献   

12.
T Wang  Y Su  Y Li 《PloS one》2012,7(7):e41780

Background

Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation.

Methodology/Principal Findings

Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations.

Conclusions/Significance

Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.  相似文献   

13.
The genetic variation and clonal diversity of two divergent types (grey-green and yellow-green) of clonal populations of Leymus chinensis Tzvel at 14 loci were compared. Total gene diversity (HT) and the coefficient of genetic differentiation (GST) were all higher for the yellow-green type (HT = 0.270; GST =0.186) than for the grey-green type (HT = 0.250; GST = 0.157) of L. chinensis. Rare alleles usually occurred as heterozygotes rather than homozygotes and significant deviations from Hardy-Weinberg equilibrium were found only at a few loci. This indicated that these two types of populations were mainly out-crossing. Clonal diversity, evenness of clones, and mean clone size were not significantly different between the two types. We found that differences between the clone size and genetic variation of the yellow-green type of populations occurred with different climate and habitat population groups. However, for the grey-green type of populations, these genetic variations decreased under conditions of different climate and habitat population groups.  相似文献   

14.
1. Sexual populations are expected to perform better in fluctuating environments than asexuals because recombination provides the potential to adapt to changing environments due to increased genetic variation. Nevertheless, some asexual species show comparably high levels of genotypic diversity. Such diversity might be achieved through gene flow between coexisting sexual and asexual populations or through sexual events within asexual populations. 2. Evidence for occasional sex in the flatworm Schmidtea polychroa was previously found at one specific site that is inhabited by parthenogenetic forms. There, varying rates of sex between subpopulations, reaching up to 12%, were observed. Past recurrent sexual processes left a significant genetic signature in the population genetic structure of this population. In the present study, we examined the population genetic structure of six independent metapopulations (lakes) of the freshwater planarian flatworm S. polychroa, to confirm the presence of occasional sex and that its population genetic consequences can be generalised. 3. Using microsatellites, we found varying rates of occasional sex among subpopulations. Metapopulations showed medium to high levels of genotypic diversity that correlated with the rate of sex. 4. We conclude that occasional sex has considerable consequences for population genetic structure of parthenogenetic species and promotes diversity that might allow response to the particular type of selection that is usually predicted to favour sexual reproduction. This reproductive strategy provides genetic characteristics required for selection to act on, and might, therefore, explain the success of this parthenogenetic species.  相似文献   

15.
Xia T  Chen S  Chen S  Ge X 《Biochemical genetics》2005,43(3-4):87-101
Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai–Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai–Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.  相似文献   

16.
SUMMARY. 1 Genetic (electrophoretic) and sex ratio data were used to assess the contributions of sexual and asexual reproduction to recruitment to populations of the freshwater ostracod Candonocypris novaezelandiae in temporary and permanent water bodies of varying size.
2. Two distinct types of population structure were found. Populations from eight permanent ponds, a reservoir and a temporary pond, apparently comprised only females and were dominated by a few highly replicated genotypes. Significant departures from Hardy-Weinberg equilibria were observed for at least one locus in all populations, and multi-locus genotypic diversity ranged between 16% and 48% of that expected in a population with the same underlying gene frequencies reproducing solely by sexual means. These results were consistent with the predicted consequences of predominantly asexually derived recruitment.
3. In contrast, sexual reproduction was probably most important in a population inhabiting a large temporary swamp. This population displayed 79% of the genotypic diversity expected for a sexually reproducing population, and contained both males and females.
4. Most theoretical models predict that sexually reproducing individuals should have a selective advantage in unstable environments. The results of this study do not provide a perfect association of sexually derived recruitment with unstable habitats.  相似文献   

17.
Genetic population structure and dispersal in Atlantic Island caddisflies   总被引:2,自引:0,他引:2  
SUMMARY 1. Population genetic structure of Wormaldia tagananana, a caddis with a narrow geographic range and endemic to the Canary Islands, was investigated by studying allozyme variation at 11 putative loci in five of the eight extant populations on Tenerife and La Gomera. Genetic variability, population structure and gene flow were compared with those reported previously in more widespread Trichoptera, particularly Canarian populations of the non-endemic limnephilid Mesophylax aspersus, to examine the hypothesis that the Wormaldia , with its restricted range, would exhibit relatively little genetic variability and gene flow.
2. Despite it being a narrow-range island endemic, genetic variability in populations of W. tagananana is broadly similar to values reported for more widespread caddis.
3. Significant genetic population structure was observed in W. tagananana (overall F ST = 0.387), greater than that seen in M. aspersus and amongst the highest reported for lotic caddis to date. Several site- and island-specific alleles were reported, providing further evidence for the relative isolation of individual Wormaldia populations.
4. Significant deviations from Hardy–Weinberg equilibrium were found in four of five populations (overall F IS = 0.675). This could result from within-locality population substructuring, or offspring within a reach being the product of a limited number of matings.
5. This genetic evidence supports the hypothesis that the restricted range of W. tagananana is, at least in part, because of limited dispersal ability.  相似文献   

18.
Abstract In order to clarify the genetic diversity and population structure of Ranunculus japonicus , allozymic analysis was conducted on 60 populations in southwestern Japan. Considerable genetic variati ons were detected among the populations of R. japonicus . The genetic diversities within species ( H es = 0.215) and within populations ( H ep = 0.172) were slightly higher than those of other perennial herbs with widespread distribution and outcrossing plants. Significantly higher values of fixation index were detected in some populations, which might have arisen from restricted mating partners. The majority of genetic variation (approx. 80%) resided within a population and a moderate level of genetic differentiation ( G ST = 0.203) was observed among populations. The F ST value (0.203) suggests the existence of a substantial population structure in this species. The highly significant correlation between geographic distance and F ST values indicates that isolation by distance has played an important role in the construction of the genetic structure of this species.  相似文献   

19.
We studied isozyme variation in two annual species that produce bulbils, Sedum rosulato-bulbosum , which includes both sexually reproducing plants and obligate clonal plants that result from triploidy (fertile and sterile S. rosulato-bulbosum , respectively), and an obligate clonal plant, Sedum bulbiferum , to examine the relationship between reproductive mode and isozyme variation. The sterile S. rosulato-bulbosum population exhibited no genotypic variation, but showed high genetic variation (gene diversity, H e  = 0.60) because five of the six loci that we analyzed were heterozygous. Almost all ramets of S. bulbiferum across 20 populations shared an identical isozyme phenotype, although we could not identify the genetic basis of the phenotype. In contrast, fertile S. rosulato-bulbosum exhibited genotypic variation across the species, but comprised genotypically uniform and polymorphic populations whose genotypic variations correlated positively with the genetic variations within the populations ( H e at the genet level per population ranged from 0.08 to 0.37). Genetic drift and habitat conditions inhibiting seedling recruitment may have caused this among-population variation. The results for sterile and fertile S. rosulato-bulbosum suggest that exclusive clonal reproduction causes low genotypic variation, but maintains genetic variation within individuals. Factors that affect the maintenance of genetic variation in these plants are discussed on the basis of these findings.  相似文献   

20.
The prevalence of sexual reproduction of animal species is a paradox for evolutionary theory since it remains unclear whether the evolutionary benefits of sexual reproduction outweigh the costs. One attempt at explaining the maintenance of sex is the Tangled Bank hypothesis: Sexual reproduction shuffles around alleles through crossing over and recombination, resulting in a wide range of individuals, some of whom will be able to survive in the harshest of environments with low and dwindling food resources. Whereas, with respect to clonally reproduced individuals there is arguably less genetic variation so that if food resources start to fluctuate, these individuals may not be able to survive under the new conditions. In our study, we conducted individual based modeling computer simulations using the program EcoSim to investigate two hypotheses related to fluctuating resources: First, in the context of fluctuating resources, populations of sexual species will outpace the populations of asexual species who are unable to adapt to changing conditions. The second hypothesis that we investigated is that with respect to facultative species there will be an increase in sexual reproduction and a decrease in asexual reproduction as a response to fluctuating resources. The control runs involved relatively stable food resources for obligate sexual, obligate asexual and facultatively reproducing prey species, whereas the experimental runs involved unstable fluctuating resources. Although we found that population levels were higher for obligate sexual prey vs. obligate asexual prey, this was not due to the manipulation of the independent variable, food resources, since these results were consistent across experimental, and control runs. However, in terms of the runs for facultative species, we found that in experimental runs, there was a discernably lower level of asexual reproduction and a slight increase in sexual reproduction in the later stages of the runs, which is likely a response to fluctuating resources. These results tend to confirm the hypothesis that in terms of facultative species, there will be a decrease in asexual reproduction and an increase in sexual reproduction in response to fluctuating resources. Moreover, we found that these features may be evolutionary in nature rather than simply a matter of phenotypic plasticity, which to the best of our knowledge is not a result in any other simulation or empirical study on Tangled Bank with respect to facultative species. Our study therefore contributes to the ongoing debate of whether the switch to sex in facultative species is the result of phenotypic plasticity or evolutionary in character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号