首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During fruiting-body formation in Myxococcus xanthus, cells aggregate into raised mounds, where they sporulate. A new class of aggregation-defective developmental mutants was identified within a collection of nonfruiting mutants of M. xanthus. The mutants failed to aggregate into discrete mounds, but rather aggregated into "frizzy" filaments. Many cells within the filaments sporulated normally. Pairwise mixtures of representative frizzy mutants were unable to stimulate each other to aggregate normally. Two strains of M. xanthus were isolated which contained transposon Tn5 insertions mapping near one frizzy mutation. A search through 36 mutants exhibiting the frizzy phenotype showed that all were linked to the same Tn5 insertion sites. Three-factor cross-analysis of 22 of these mutants allowed the mapping of these mutations into many loci. The localization of Tn5 inserts adjacent to this region make possible further manipulation of these genes.  相似文献   

2.
3.
Abstract The effects of heat shock upon the expression of several developmentally regulated genes of Myxococcus xanthus were examined. No effects were observed on levels or timing of developmentally regulated β-galactosidase expression in eight randomly selected Tn5lac insertion mutants. However, heat shock significantly affected the fruiting behavior of temperature-sensitive aggregation ( tag ) mutants of M. xanthus . The tag mutant phenotype exhibits the normal aggregation of cells to form fruiting bodies at temperatures < 34°C, but cells fail to aggregate at temperatures ⩾ 34°C. Heat shock administered to tag mutant strains prior to starvation prohibited fruiting body formation at permissive temperatures. Additionally, tag mutant strains were found to be extremely sensitive to killing at 40°C. Heat shock was also found to increase tagA and tagE expression by 22 and 47%, respectively. Mutations in tagA blocked heat shock induced expression of tagE .  相似文献   

4.
asg-carrying strains of Myxococcus xanthus arose in a selection for mutants defective in cell-cell signalling during fruiting body development. All 15 asg mutations examined were found to lie in one of three genetic loci, asgA, asgB, or asgC. The loci were defined by linkage to different insertions of transposon Tn5 and molecular cloning of asgA. asg mutants of all three types were deficient in the aggregation of cells into mounds of the sort that normally give rise to fruiting bodies. asg mutants were also deficient in spore formation; sporulation is normally one of the last steps in fruiting body development. Consistent with a requirement for cell-to-cell signalling, at 1 to 2 h asg+-carrying cells release a material called A-factor that can rescue development of asg mutants. asgA, asgB, and asgC mutants released 5% or less of the asg+ level of A-factor, as measured by bioassay. The experimental results are consistent with the hypothesis that a deficiency in A-factor production or release is the primary developmental defect in asg mutants and that aggregation and sporulation depend on A-factor. asg mutations at all three loci also changed the color and morphology of growing colonies, and failure to release A-factor may itself arise from a defect in growing cells.  相似文献   

5.
The transposon Tn5 was used to map temperature-sensitive mutants of Myxococcus xanthus defective in aggregation (C. E. Morrison and D. R. Zusman, J. Bacteriol. 140:1036-1042, 1979). Seven of the eight mutants showing a similar terminal phenotype (rough) were found to be tightly linked. These mapped in a group of loci which we have designated aggR1, aggR2, aggR3, and aggR4. Temperature-sensitive mutants having a different terminal phenotype were not liked to aggR. A search through a group of nonconditional rough mutants indicated that a much lower proportion of these (1 of 35) mapped in aggR. Thus, aggR is probably only one of many sites which can lead to the rough phenotype when mutated. Localized mutagenesis was used to isolate nine additional aggR mutants. All mapped within aggR1, aggR2, or aggR3, and none was found outside this region. Thus, we have characterized a cluster of developmental genes which are needed for aggregation in M. xanthus. The localization of a Tn5 insert adjacent to this region makes possible further manipulation of these genes.  相似文献   

6.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

7.
Physical characterization of 13 transposon Tn5 insertions within the agrocinopine-independent, transfer-constitutive Ti plasmid pTiC58Trac identified three separate loci essential for conjugation of this nopaline/agrocinopine A + B-type Ti plasmid. Complementation analysis with relevant subcloned DNAs indicated that the three physically separated blocks of conjugal genes constitute distinct complementation groups. Two independent Tn5 insertions within the wild-type, agrocinopine-dependent, repressed pTiC58 plasmid resulted in constitutive expression of conjugal transfer. These two insertions were physically indistinguishable and could not be complemented in trans. However, the Trac phenotype resulted when the Tn5-mutated fragment cointegrated into the wild-type Ti plasmid. While the spontaneous Trac mutant Ti plasmids were also derepressed for agrocinopine catabolism, those generated by Tn5 insertions remained inducible, indicating that this apparent cis-acting site is different from that affected in the spontaneous mutants. No chromosomal Tn5 insertion mutations were obtained that affected conjugal transfer. An octopine-type Ti plasmid, resident in different Agrobacterium tumefaciens chvB mutants, transferred at normal frequencies, demonstrating that this virulence locus affecting plant cell binding is not required for Ti plasmid conjugation. None of our conjugal mutants limited tumor development on Kalanchoe diagremontiana. Known lesions in pTiC58 vir loci had no effect on conjugal transfer of this Ti plasmid. These results show that pTiC58 Ti plasmid conjugal transfer occurs by functions independent of those required for transfer of DNA to plant cells.  相似文献   

8.
9.
10.
Guo D  Wu Y  Kaplan HB 《Journal of bacteriology》2000,182(16):4564-4571
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Omega4521 fusion are Lac(+). One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac(-) TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac(+) LPS O-antigen mutants containing Tn5 lac Omega4521 (Tc(r)). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development.  相似文献   

11.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

12.
A method was devised to efficiently select isolates of Staphylococcus aureus 8325 in which Tn551, a transposon originating on the pI258 plasmid responsible for erythromycin resistance (Emr), had translocated to the host chromosome. This method consisted of selecting for Emr at 43 degrees C with a strain in which the pI258 plasmid was unable to replicate at 43 degrees C because of a temperature-sensitive plasmid mutation. By selecting isolates that were Emr at 43 degrees C and auxotrophic for nutrients not required by the parent strain. Tn551-induced auxotrophic mutants were readily isolated. The incidence of auxotrophic classes was not random; 80% of the isolates in one experiment were Trp-, whereas only a single example of each of some of the other classes was isolated. Among the Trp- mutants, the distribution of trp genes affected and the frequency of precise excision of Tn551 from individual sites varied. When analyzed by transformation, the Tn551-induced ala, his, ilv, lys, rib, thrA, thrB, and trp mutations were shown to occupy sites previously defined by nitrosoguanidine-induced mutations. Tn551-induced mutagenesis provided three previously unrecognized classes of auxotrophs (tyr, met, and thrC), and the Tn551 integration sites resulting in these mutations have been identified. In addition, a chromosomal region (uraB) was identified by Tn551 mutagenesis that is distinct from uraA (previously defined by chemical mutagenesis). Some Tn551-induced mutations (most notably pur) could not be linked to the known linkage groups of the chromosome by transformation. With the exception of two pur mutations, all of the Tn551-induced auxotrophic mutational sites cotransformed at unity with Tn551 and, in cases in which they were selected, prototrophic transformants were always Ems. Thus, the Tn551 and auxotrophic sites are identical.  相似文献   

13.
Certain developmental mutants of Myxococcus xanthus can be complemented (extracellularly) by wild-type cells. Insertions of Tn5 lac (a transposon which couples beta-galactosidase expression to exogenous promoters) into developmentally regulated genes were used to investigate extracellular complementation of the A group mutations. A- mutations reduced developmental beta-galactosidase expression from 18 of 21 Tn5 lac insertions tested and that expression was restored to A- Tn5 lac cells by adding wild-type cells. The earliest A-dependent Tn5 lac normally expresses beta-galactosidase at 1.5 hr of development indicating a developmental block at 1-2 hr in A- mutants. A substance which can rescue the expression of this early Tn5 lac is released by wild-type (A+) but not by A- cells. This substance appears in a cell-free wash of wild-type cells or in starvation buffer conditioned by wild-type cells 1-2 hr after development is initiated. The conditioned starvation buffer also restores normal morphological development to an A- mutant.  相似文献   

14.
The Tn3-like Streptomyces transposon Tn4560 was used to mutagenize Streptomyces avermitilis, the producer of anthelmintic avermectins and the cell growth inhibitor oligomycin. Tn4560 transposed in this strain from a temperature-sensitive plasmid to the chromosome and from the chromosome to a plasmid with an apparent frequency of about 10(-4) to 10(-3) at both 30 and 39 degrees C. Auxotrophic and antibiotic nonproducing mutations were, however, obtained only with cultures that were kept at 37 or 39 degrees C. About 0.1% of the transposon inserts obtained at 39 degrees C caused auxotrophy or abolished antibiotic production. The sites of insertion into the S. avermitilis chromosome were mapped. Chromosomal DNA fragments containing Tn4560 insertions in antibiotic production genes were cloned onto a Streptomyces plasmid with temperature-sensitive replication and used to transport transposon mutations to other strains, using homologous recombination. This technique was used to construct an avermectin production strain that no longer makes the toxic oligomycin.  相似文献   

15.
The Tn3-like transposon Tn4556 (and its derivatives Tn4560 and Tn4563) has been used for insertion mapping of genetic loci cloned on plasmids, but it has been difficult to obtain chromosomal insertions, largely because of the lack of a strong selection against transposon donor molecules. In this communication, we report two efficient selection techniques for transposition and their use in the isolation of chromosomal insertion mutations. A number of independent Streptomyces coelicolor morphological mutants (bld and whi) were obtained. Two of the bld mutations were mapped to locations on the chromosome by SCP1-mediated conjugation; at least one mutation, bld-5m1, appears to define a novel locus involved in control of S. coelicolor morphogenesis and antibiotic production.  相似文献   

16.
Using a luxAB reporter transposon, seven mutants of Sinorhizobium meliloti were identified as containing insertions in four cold shock loci. LuxAB activity was strongly induced (25- to 160-fold) after a temperature shift from 30 to 15 degrees C. The transposon and flanking host DNA from each mutant was cloned, and the nucleic acid sequence of the insertion site was determined. Unexpectedly, five of the seven luxAB mutants contained transposon insertions in the 16S and 23S rRNA genes of two of the three rrn operons of S. meliloti. Directed insertion of luxAB genes into each of the three rrn operons revealed that all three operons were similarly affected by cold shock. Two other insertions were found to be located downstream of a homolog of the major Escherichia coli cold shock gene, cspA. Although the cold shock loci were highly induced in response to a shift to low temperature, none of the insertions resulted in a statistically significant decrease in growth rate at 15 degrees C.  相似文献   

17.
18.
Acetobacter tropicalis SKU1100 is a thermotolerant acetic acid bacterium that grows even at 42 °C, a much higher temperature than the limit for the growth of mesophilic strains. To elucidate the mechanism underlying the thermotolerance of this strain, we attempted to identify the genes essential for growth at high temperature by transposon (Tn10) mutagenesis followed by gene or genome analysis. Among the 4,000 Tn10-inserted mutants obtained, 32 exhibited a growth phenotype comparable to that of the parent strain at 30 °C but not at higher temperatures. We identified the insertion site of Tn10 on the chromosomes of all the mutant strains by TAIL (Thermal Asymmetric Interlaced)-PCR, and found 24 genes responsible for thermotolerance. The results also revealed a partial overlap between the genes required for thermotolerance and those required for acetic acid resistance. In addition, the origin and role of these thermotolerant genes are discussed.  相似文献   

19.
M Rella  A Mercenier  D Haas 《Gene》1985,33(3):293-303
For insertional mutagenesis of Pseudomonas aeruginosa, a derivative of the kanamycin-resistance (KmR) transposon Tn5 was constructed (Tn5-751) that carried the trimethoprim-resistance (TpR) determinant from plasmid R751 as an additional marker. Double selection for KmR and TpR avoided the isolation of spontaneous aminoglycoside-resistant mutants which occur at high frequencies in P. aeruginosa. As a delivery system for the recombinant transposon, plasmid pME305, a derivative of the broad-host-range plasma RP1, proved effective; pME305 is temperature-sensitive at 43 degrees C for maintenance in Escherichia coli and P. aeruginosa and deleted for IS21 and the KmR and primase genes. In matings with an E. coli donor carrying pME9(= pME305::Tn5-751), transposon insertion mutants of P. aeruginosa PAO were recovered at approx. 5 X 10(-7)/donor at 43 degrees C. Among Tn5-751 insertional mutants 0.9% were auxotrophs. A thr::Tn5-751 mutation near the recA-like locus rec-102 is useful for the construction of recombination-deficient strains. Several arc::Tn5-751 mutants could be isolated that were defective in anaerobic utilization of arginine as an energy source. From three of these mutants the arc gene region was cloned into an E. coli vector plasmid. Since Tn5-751 has a single EcoRI site between the TpR and KmR genes, EcoRI-generated fragments carrying either resistance determinant plus adjacent chromosomal DNA could be selected separately in E. coli. Thus, a restriction map of the arc region was constructed and verified by hybridization experiments. The arc genes were tightly clustered, confirming earlier genetic evidence.  相似文献   

20.
Escherichia coli promoters that are more active at low temperature (15 to 20 degrees C) than at 37 degrees C were identified by using the transposon Tn5-lac to generate promoter fusions expressing beta-galactosidase (beta-Gal). Tn5-lac insertions that resulted in low-temperature-regulated beta-Gal expression were isolated by selecting kanamycin-resistant mutants capable of growth on lactose minimal medium at 15 degrees C but which grew poorly at 37 degrees C on this medium. Seven independent mutants were selected for further studies. In one such strain, designated WQ11, a temperature shift from 37 degrees C to either 20 or 15 degrees C resulted in a 15- to 24-fold induction of beta-Gal expression. Extended growth at 20 or 15 degrees C resulted in 36- to 42-fold-higher beta-Gal expression over that of cells grown at 37 degrees C. Treatment of WQ11 with streptomycin, reported to induce a response similar to heat shock, failed to induce beta-Gal expression. In contrast, treatment with either chloramphenicol or tetracycline, which mimics a cold shock response, resulted in a fourfold induction of beta-Gal expression in strain WQ11. Hfr genetic mapping studies complemented by physical mapping indicated that in at least three mutants (WQ3, WQ6, and WQ11), Tn5-lac insertions mapped at unique sites where no known cold shock genes have been reported. The Tn5-lac insertions of these mutants mapped to 81, 12, and 34 min on the E. coli chromosome, respectively. The cold-inducible promoters from two of the mutants (WQ3 and WQ11) were cloned and sequenced, and their temperature regulation was examined. Comparison of the nucleotide sequences of these two promoters with the regulatory elements of other known cold shock genes identified the sequence CCAAT as a putative conserved motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号