首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

2.
Summary An antiserum raised against GABA was used to stain the abdominal nervous system of the locust. To interpret the results, however, it was first necessary to describe the structure of the free abdominal and terminal ganglia. This was done on the basis of ethyl-gallate staining. The free abdominal ganglia are similar in structure to the abdominal neuromeres of the metathoracic ganglia. The terminal ganglion is composed of four neuromeres (representing ganglia 8–11), but only three can be distinguished in the adult on morphological grounds. The eighth neuromere resembles the free ganglia, but the ninth lacks DCI (dorsal commissure I) and the T tracts. In the tenth, only DCII and III are recognisable of the commissures, but two more posterior ones of uncertain homology are also present. Immunocytochemistry reveals three populations of somata in each abdominal ganglion. Of these only one, the medial posterior group, is found in the thoracic ganglia. DCIV and the supra-median commissure are composed of stained neurites, DCII and V contain both unstained neurites and DCI, III and VI are unstained. With the exception of the median ventral tract, all the longitudinal tracts contain some stained axons.  相似文献   

3.
Summary An antiserum raised against gamma aminobuyric acid (GABA) was used to stain the thoracic nervous system of the locust. It stained both neuronal somata and processes within the neuropile. Among the stained somata, those of the three pairs of common inhibitory motor neurones could be identified in each of the three thoracic ganglia. In the pro- and mesothoracic ganglia five discrete groups of somata are stained, four ventral and one dorsal. In the metathoracic neuromere, an additional second dorsal group can be identified. In the abdominal neuromeres of the metathoracic ganglion both dorsal and ventral somata are stained but the latter cannot be divided into discrete populations. In each ganglion, dorsal commissures (DC) IV and V are composed of stained neurites, DCVII, the supramedian commissure, the perpendicular tract, and all the longitudinal tracts contain both stained and unstained neurites. DCI, II, III and VI, the T and I tracts are unstained. An abundance of GABA-like immunoreactive processes is found throughout the neuropile except for the anterior ventral association centre where stained processes are sparser. Some of the stained cell groups contain neurones that have been studied physiologically. The function of these neurones is discussed.Beit Memorial Fellow  相似文献   

4.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

5.
The evolutionary origin of the tritocerebral neuromere, which is a brain segment located at the junction between the supra- and subesophageal ganglia in most mandibulates (arthropods such as crustaceans and insects), is a subject rich in contentious debate. Various models have argued that the tritocerebrum came from a segmental nerve cord ganglia that was recruited into the head during the course of arthropod evolution. However, despite much thought on the subject, the origin of the tritocerebrum remains obscure. Here I describe the development of the tritocerebral commissure in Drosophila and demonstrate that the tritocerebral and mandibular commissures actually form as one commissure and then separate in a manner very similar to how the anterior and posterior commissures of a ventral nerve cord neuromere form. I propose that the tritocerebral neuromere originated from the splitting of an ancestral neuromere located in the anterior subesophageal ganglion into distinct tritocerebral and mandibular neuromeres. Also, I discuss the problem of arthropod brain neuromere homology in reference to this hypothesis.  相似文献   

6.
Three distinct clusters of crustacean cardioactive-peptide-immunoreactive neurones occur in the terminal abdominal ganglion of the crayfish species Orconectes limosus, Astacus leptodactylus, Astacus astacus and Procambarus clarkii, as revealed by immunocytochemistry of whole-mount preparations and sections. They exhibit similar topology and projection patterns in all four studied species. An anterior ventral lateral and a posterior lateral cluster contain one small, strongly stained perikaryon and two large, less intensely stained perikarya, each showing contralateral projections. A posterior medial lateral cluster of up to six cells also contains these two types of perikarya. Whereas the small type perikarya belong to putative interneurones, the large type perikarya give rise to extensive neurohaemal plexuses in perineural sheaths of the third roots of the fifth abdominal ganglia, the connectives, the dorsal telson nerves, the ganglion itself, its roots and arteriolar supply. Thin fibres from these plexuses reach newly discovered putative neurohaemal areas around the hindgut and anus via the intestinal and the anal nerves, and directly innervate the phasic telson musculature. A comparison with earlier investigations of motoneurones and segmentation indicates that these three cell groups containing putative neurosecretory neurones may be members of at least three neuromeres in this ganglion. Crustacean cardioactive peptide released from these neurones may participate in the neurohumoral and modulatory control of different neuronal and muscle targets, thereby exceeding its previously established hindgut and heart excitatory effects.Abbreviations AG abdominal ganglion - adpl arteria dorsalis pleica - Ala arreria lateralis abdominalis - Asub arteria subneuralis - CCAP crustacean cardioactive peptide - CNS central nervous system - IR immunoreactive - LG lateral giant axon - LTr lateral tract - MDT medial dorsal tract - MG medial giant axon - M Tr medial tract - mcan musculus compressor ani - mfltp museulus flexor telsonos posterior - nan nervus ani (AG6 N5) - nant nervus anterior (AG6 N1, N2) - nia nervus intestinal anterior - nin nervus intestinalis (AG6 N7) - nip nervus intestinalis posterior - nteld nervus telsonos dorsalis (AG6 N6) - nielv nervus telsonos ventralis (AG6 N4) - nur nervus uropedalis (AG6 N3) - nven nervus ventralis (AG5 N3) - PIR peri-intestinal ring - PTF posterior telson flexor - VLT ventral lateral tract - VMT ventral medial tract - VNC ventral nerve cord - VIF ventral telson flexor - AVLC, PLC, PMLC anterior ventral lateral, posterior lateral, posterior medial lateral CCAP-immunoreactive cell cluster - A6AVC, A7AVC anterior ventral commissures - A7DCI dorsal commissure I - A7PVC posterior ventral commissure - A7SCII sensory commissure II - A7VCII, A7VCIII ventral commissures II and III of the sixth (A6) and seventh (A7) abdominal neuromer  相似文献   

7.
【目的】解剖棉铃虫Helicoverpa armigera (Hübner) 5龄幼虫脑和咽下神经节及其内部神经髓形态结构,并分析和构建幼虫脑和咽下神经节以及各神经髓的三维结构模型。【方法】采用免疫组织化学方法解剖脑和咽下神经节的内部神经髓结构,利用激光共聚焦显微镜获取脑和咽下神经节扫描图像,然后利用AMIRA 三维图像分析软件进行图像分析,从而构建脑和咽下神经节的三维结构模型,并测量脑和咽下神经节以及内部各神经髓的体积,并分析了相对比例。【结果】 棉铃虫5龄幼虫脑和咽下神经节由围咽神经索连接在一起。脑主要由前脑、中脑和后脑3部分组成。前脑内包括视叶、蕈形体和中央体等形态结构较明显的神经髓。此外,前脑还包括其他位于脑的左右两侧以及背侧和腹侧大量神经髓区域,约占脑总神经髓的59.65%。这些神经髓区域边界不明显。中脑主要包括1对触角叶;后脑位于脑的腹侧和触角叶的下方,体积较小。咽下神经节由3个神经节融合构成,从前到后分别为上颚神经节、下颚神经节和下唇神经节,由于融合的紧密程度高,3个神经节间的边界不明显。【结论】阐明了棉铃虫5龄幼虫脑和咽下神经节的神经髓形态结构,构建了脑和咽下神经节以及内部神经髓的三维结构模型。三维模型可以任意旋转,能从任何角度观察脑、咽下神经节和内部不同神经髓的结构及其它们之间的空间关系。本研究结果对研究棉铃虫脑和咽下神经节信息接收、处理及调控行为的机制奠定了解剖学基础。  相似文献   

8.
The primary axon scaffold of the insect brain is established early in embryogenesis and comprises a preoral protocerebral commissure, a postoral tritocerebral commissure and longitudinal fiber pathways linking the two. In both grasshopper and fly its form is approximately orthogonal and is centered around the stomodeum. We show how pioneer fibers from the protocerebrum and tritocerebrum cross the brain midline directly via their respective commissures. The deutocerebrum, however, lacks its own commissure and we describe how deutocerebral pioneers circumnavigate the gut to cross the midline either via the protocerebral commissure or the tritocerebral commissure. In contrast to all other commissures of the central nervous system, the protocerebral commissure persists, albeit in reduced form, in the commissureless mutation in the fly. Besides the com gene, a further, as yet unidentified, mechanism must regulate this commissure. The formation of the tritocerebral commissure involves labial, a member of the Hox gene group. Genetic rescue experiments in labial mutants reveal that the formation of this commissure can be rescued by all other Hox genes except Abdominal-B. However, only in the labial and Deformed null mutants are the commissures associated with the respective expression domains (tritocerebral, mandibular, respectively) absent. This suggests that the molecular mechanisms regulating postoral brain commissure formation are distinct from those in the neuromeres of the ventral nerve cord.  相似文献   

9.
The anatomy of the neurosecretory cells in the brain-subesophageal ganglion complex of female European corn borer moth Ostrinia nubilalis (Lepidoptera: Pyralidae) was studied using histological and cobalt backfilling techniques. Histological staining revealed the presence of 2 median and one lateral neurosecretory cell groups in the brain. These brain neurosecretory cells are made up of mainly type A cells with a few type B cells in the median group. Three type C neurosecretory cell clusters occupy the apparent mandibular, maxillary, and labial neuromeres at the ventral median aspect of the subesophageal ganglion. Axonal pathways of the neurosecretory cell groups were delineated by retrograde cobalt filling from the corpora cardiaca. Fibers of the 3 brain neurosecretory cell groups merged to form a distinct axonal tract that exits the brain via the fused nervi corporis cardiaci-1 + 2. Cobalt backfilling from the corpora cardiaca filled 4 groups of cell bodies in the subesophageal ganglion. The presence in the subesophageal ganglion of extensive dendritic arborizations derived from the brain suggests interactions between neurosecretory cell groups in the 2 head ganglia.  相似文献   

10.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

11.
The cellular localization of the biogenic amines dopamine and serotonin was investigated in the ventral nerve cord of the cricket, Gryllus bimaculatus, using antisera raised against dopamine, -tyrosine hydroxylase and serotonin. Dopamine-(n<-70) and serotonin-immunoreactive (n<-120) neurones showed a segmental arrangement in the ventral nerve cord. Some neuromeres, however, did not contain dopamine-immunoreactive cell bodies. The small number of stained cells allowed complete identification of brain and thoracic cells, including intersegmentally projecting axons and terminal arborizations. Dopamine-like immunostaining was found primarily in plurisegmental interneurones with axons descending to the soma-ipsilateral hemispheres of the thoracic and abdominal ganglia. In contrast, serotonin-immunostaining occurred predominantly in interneurones projecting via soma-contralaterally ascending axons to the thorax and brain. In addition, serotonin-immunoreactivity was also present in efferent cells and afferent elements. Serotonin-immunoreactive, but no dopamine-immunoreactive, varicose fibres were observed on the surface of some peripheral nerves. Varicose endings of both dopamine-and serotonin-immunoreactive neurones occurred in each neuromere and showed overlapping neuropilar projections in dorsal and medial regions of the thoracic ganglia. Ventral associative neuropiles lacked dopamine-like immunostaining but were innervated by serotonin-immunoreactive elements. A colocalization of the two amines was not observed. The topographic representation of neurone types immunoreactive for serotonin and dopamine is discussed with respect to possible modulatory functions of these biogenic amines in the central nervous system of the cricket.  相似文献   

12.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

13.
By means of single-cell matrix assisted laser desorption/ionization time-of-flight mass spectrometry, we analysed neuropeptide expression in all FXPRLamide/pheromone biosynthesis activating neuropeptide synthesizing neurons of the adult tobacco hawk moth, Manduca sexta . Mass spectra clearly suggest a completely identical processing of the pheromone biosynthesis activating neuropeptide-precursor in the mandibular, maxillary and labial neuromeres of the subesophageal ganglion. Only in the pban -neurons of the labial neuromere, products of two neuropeptide genes, namely the pban -gene and the capa -gene, were detected. Both of these genes expressed, amongst others, sequence-related neuropeptides (extended WFGPRLamides). We speculate that the expression of the two neuropeptide genes is a plesiomorph character typical of moths. A detailed examination of the neuroanatomy and the peptidome of the (two) pban -neurons in the labial neuromere of moths with homologous neurons of different insects indicates a strong conservation of the function of this neuroendocrine system. In other insects, however, the labial neurons either express products of the fxprl -gene or products of the capa -gene. The processing of the respective genes is reduced to extended WFGPRLamides in each case and yields a unique peptidome in the labial cells. Thus, sequence-related messenger molecules are always produced in these cells and it seems that the respective neurons recruited different neuropeptide genes for this motif.  相似文献   

14.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

15.
A gene encoding a precursor polyprotein of diapause hormone (DH) and four related peptides is expressed by three groups of neurosecretory cells in the suboesophageal ganglion (SOG) of Bombyx mori. Long-term chronic recordings of firing activities were made from a common axonal tract (the maxillary nerve) of two groups of cells localized in the mandibular and maxillary neuromeres of SOG during pupal-adult development. Mandibular and maxillary cells usually produced a cluster of action potentials at an interval of 30-60 min during pupal-adult development and there was no significant difference in the firing activity profile between diapause-egg and non-diapause-egg producers. We suggest that rather than DH secretion, pupal mandibular and maxillary cells are involved in the secretion of DH-related neuropeptides. DH secretion seems to be assigned to the third group of cells (labial cells); hence, there may be different posttranslational processing of the precursor polyprotein in different neurosecretory cell groups.  相似文献   

16.
Summary In an immunohistochemical study of the ventral nerve cord of L. decemlineata, five distinct neuron categories were distinguished: 1) Two paired segmental twin interneurons occur in each ganglion or neuromere; their axons distribute processes over almost the entire nerve cord and run to the cerebral ganglion complex. In contrast, other axons are distributed locally. 2) Four large frontal neurosecretory neurons occur in the suboesophageal ganglion (SOG), two of which have axons that run into the mandibular nerves to form a neurohemal plexus on the surface of cerebral nerves. 3) A pair of large caudal neurons occur in the terminal ganglion and innervate the hindgut. 4) Local miniature interneurons occur in the SOG. 5) Terminal neurons are present in the last abdominal ganglion. Segmental twin interneurons appear to be grouped into 3 functional units spanning several ganglia. Their axons run to specific projection areas, which separate the functional units, and which mark the externally visible separation of condensed ganglion complexes. A possible role of the most caudal functional unit might be the synaptic control of caudal neurons innervating the hindgut.  相似文献   

17.
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCPB)-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCPB-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCPB-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.This work was sponsored by the Facultad de Ciencias Biomédicas, Universidad Austral. Part of this work was performed at the Division of Neurobiology, Arizona Research Laboratories (Tucson, Arizona) with the support of a Fulbright Research Award to B.P.S.  相似文献   

18.
In the silkworm Bombyx mori, the diapause hormone-pheromone biosynthesis activating neuropeptide gene, DH-PBAN, is a neuropeptide gene that encodes a polypeptide precursor consisting in five Phe-X-Pro-Arg-Leu-NH2 (FXPRL) amide (FXPRLa) neuropeptides; DH (diapause hormone), PBAN (pheromone-biosynthesis-activating neuropeptide) and α-, β- and γ-SGNPs (subesophageal ganglion neuropeptides). These neuropeptides are synthesized in DH-PBAN-producing neurosecretory cells contained within three neuromeres, four mandibular cells, six maxillary cells, two labial cells (SLb) and four lateral cells of the subesophageal ganglion. DH is solely responsible, among the FXPRLa peptide family, for embryonic diapause. Functional differentiation has been previously suggested to occur at each neuromere, with the SLb cells releasing DH through brain innervation in order to induce embryonic diapause. We have investigated the immunoreactive intensity of DH in the SLb when thermal (25°C or 15°C) and light (continuous illumination or darkness) conditions are altered and following brain surgery that induces diapause or non-diapause eggs in the progeny. We have also examined the immunoreactivity of the other FXPRLa peptides by using anti-β-SGNP and anti-PBAN antibodies. Pupal SLb somata immunoreactivities seem to be affected by both thermal and light conditions during embryogenesis. Thus, we have been able to identify a close correlation between the immunoreactive intensity of neuropeptides and environmental conditions relating to the determination of embryonic diapause in B. mori.  相似文献   

19.
Summary We studied the neuroanatomy of the terminal (sixth abdominal) ganglion in the crayfish Procambarus clarkii with silver-impregnated sections and nickel fills. We describe the fiber tracts, commissures and neuropilar areas, and give the topological relationships of motoneurons and intersegmental interneurons with reference to their neuropilar landmark structures.All five anterior abdominal ganglia have an almost identical number of 600–700 neurons with a similar pattern of distribution. Each contains a single neuromere with a common plan of neuropil organization. In contrast, the terminal ganglion consists of two neuromeres which appear to be derived from the intrinsic sixth abdominal and telson ganglion. The basic organization of each neuromere parallels that of the third abdominal ganglion in the appearance and arrangement of fiber tracts and commissures, although some modifications occur. The fusion of two neuromeres is represented by the duplication of segmentally homologous neurons, MoGs and LGs, whose topological relationships to the neuropil structures are similar to those of the anterior ganglion.We also discuss the origin of the telson and its ganglion (the seventh abdominal neuromere), and dispute the classical theory that the telson derives from a postsegmental region.  相似文献   

20.
Summary The presence and distribution of neuropeptides belonging to the pancreatic polypeptide family have been demonstrated by an indirect immunofluorescence technique in the nervous systems of adult male and female Schistosoma mansoni. Seven antisera of differing regional specificity to pancreatic polypeptide (PP), peptide YY (PYY) and neuropeptide Y (NPY) were employed on both whole-mount and cryostat-sectioned material. Positive immunoreactivity (IR) was obtained with all antisera except an N-terminally-directed antiserum to NPY. In the CNS, immunoreactivity was restricted to cell bodies and nerve fibres in the anterior ganglia, central commissure and dorsal and ventral nerve cords of both sexes, whereas, in the PNS, positive-IR was present in the plexuses innervating the subtegumental musculature and the oral and ventral suckers. Intense immunoreactivity was observed in a plexus of nerve fibres and cell bodies in the lining of the gynaecophoric canal and in fine nerve fibres innervating the dorsal tubercles of the male. In contrast, in the female, strong immunoreactivity was evident in nerve plexuses innervating the lining of the ovovitelline duct and in the wall of the ootype, but most notably in a cluster of cells in the region of Mehlis' gland. Results suggest that molecules with C-terminal homology to the PP-family are present in S. mansoni. These peptides would appear to be important regulatory molecules in the parasite's nervous system and may play a role in the control of egg production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号