首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imaging cytometry by multiparameter fluorescence.   总被引:1,自引:0,他引:1  
A system is described for performing multicolor fluorescence image cytometry of cell preparations. After the setting up stage, the operation is automatic: the microscope fields are found and focused; then images are acquired for each fluorophore, corrected and analyzed, without any operator interaction. Human peripheral blood lymphocytes on microscope slides were used as a test system. In these experiments, three fluorescent antibodies were used to identify lymphocyte sub-populations, and a DNA content probe was used to identify all nucleated cells. The cell subset percentages determined by image cytometry were comparable to percentages obtained when cells from the same preparation were analyzed by flow cytometry. Multicolor fluorescence imaging cytometry can potentially be extended to the analysis of cells in smears, fine needle biopsies, imprints, and tissue sections.  相似文献   

2.
OBJECTIVE: To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. STUDY DESIGN: Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. RESULTS: Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. CONCLUSION: Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.  相似文献   

3.
With the increasing use of fluorescence-based assays in high-throughput screening (HTS), the possibility of interference by fluorescent compounds needs to be considered. To investigate compound interference, a well-defined sample set of biologically active compounds, LOPAC, was evaluated using 4 fluorescein-based fluorescence polarization (FP) assays. Two kinase assays, a protease assay, and a phosphatase assay were studied. Fluorescent compound interference and light scattering were observed in both mixture- and single-compound testing under certain circumstances. In the kinase assays, which used low levels (1-3 nM) of fluorophore, an increase in total fluorescence, an abnormal decrease in mP readings, and negative inhibition values were attributed to compound fluorescence. Light scattering was observed by an increase in total fluorescence and minimal reduction in mP, leading to false positives. The protease and phosphatase assays, which used a higher concentration of fluorophore (20-1200 nM) than the kinase assays, showed minimal interference from fluorescent compounds, demonstrating that an increase in the concentration of the fluorophore minimized potential fluorescent compound interference. The data also suggests that mixtures containing fluorescent compounds can result in either false negatives that can mask a potential "hit" or false positives, depending on the assay format. Cy dyes (e.g., Cy3B and Cy5 ) excite and emit further into the red region than fluorescein and, when used in place of fluorescein in kinase 1, eliminate fluorescence interference and light scattering by LOPAC compounds. This work demonstrates that fluorescent compound and light scattering interferences can be overcome by increasing the fluorophore concentration in an assay or by using longer wavelength dyes.  相似文献   

4.

Background

In clinical diagnostics, as well as in routine dermatology, the increased need for non-invasive diagnosis is currently satisfied by reflectance laser scanning microscopy. However, this technique has some limitations as it relies solely on differences in the reflection properties of epidermal and dermal structures. To date, the superior method of fluorescence laser scanning microscopy is not generally applied in dermatology and predominantly restricted to fluorescein as fluorescent tracer, which has a number of limitations. Therefore, we searched for an alternative fluorophore matching a novel skin imaging device to advance this promising diagnostic approach.

Methodology/Principal Findings

Using a Vivascope®-1500 Multilaser microscope, we found that the fluorophore Indocyanine-Green (ICG) is well suited as a fluorescent marker for skin imaging in vivo after intradermal injection. ICG is one of few fluorescent dyes approved for use in humans. Its fluorescence properties are compatible with the application of a near-infrared laser, which penetrates deeper into the tissue than the standard 488 nm laser for fluorescein. ICG-fluorescence turned out to be much more stable than fluorescein in vivo, persisting for more than 48 hours without significant photobleaching whereas fluorescein fades within 2 hours. The well-defined intercellular staining pattern of ICG allows automated cell-recognition algorithms, which we accomplished with the free software CellProfiler, providing the possibility of quantitative high-content imaging. Furthermore, we demonstrate the superiority of ICG-based fluorescence microscopy for selected skin pathologies, including dermal nevi, irritant contact dermatitis and necrotic skin.

Conclusions/Significance

Our results introduce a novel in vivo skin imaging technique using ICG, which delivers a stable intercellular fluorescence signal ideal for morphological assessment down to sub-cellular detail. The application of ICG in combination with the near infrared laser opens new ways for minimal-invasive diagnosis and monitoring of skin disorders.  相似文献   

5.
We studied fluorescence enhancements of fluorescein tethered to silver colloids of different size. Thiolated 23-mer oligonucleotide (ss DNA-SH) was bound selectively to silver colloids deposited on 3-aminopropyltriethoxysilane (APS)-treated quartz slides. Fluorescein-labeled complementary oligonucleotide (ss Fl-DNA) was added in an amount significantly lower than the amount of unlabeled DNA tethered to the colloids. The hybridization kinetics, observed as an increase in fluorescence emission, on small (30-40 nm) and large (> 120 nm) colloids were similar. However, the final fluorescence intensity of the sample with large colloids was about 50% higher than that observed for the sample with small colloids. The reference sample without ss DNA-SH was used to estimate the fluorescence enhancements of fluorescein tethered to the small colloids (E = 2.7) and to the large colloids (E = 4.1) due to its steady fluorescence signal. The proposed method, based on controlled hybridization with minimal amount of fluorophore labeled ss DNA, can be used to reliably estimate the fluorescence enhancements on any silver nanostructures.  相似文献   

6.
Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope.  相似文献   

7.
Bacteria were either heat fixed on microscope slides or filtered with 0.2 micron-pore-size Nuclepore filters. The samples were stained with 4',6-diamidino-2-phenylindole (DAPI) for total staining and with polyvalent rabbit antibodies and fluorescein isothiocyanate-conjugated swine anti-rabbit antibodies for specific staining. By switching between two different optical filter packages in the microscope, only one sample was needed for determining both total and specific counts of bacteria. False-positive counts and other artifacts that occur with antibody staining were easily distinguished when individual fluorescent particles were checked for DAPI fluorescence. The method for applying the general stain to membrane filters was performed quickly and simply by using a DAPI-soaked polypropylene filter that lay beneath the Nuclepore filter which collected the sample.  相似文献   

8.
K A Hoff 《Applied microbiology》1988,54(12):2949-2952
Bacteria were either heat fixed on microscope slides or filtered with 0.2 micron-pore-size Nuclepore filters. The samples were stained with 4',6-diamidino-2-phenylindole (DAPI) for total staining and with polyvalent rabbit antibodies and fluorescein isothiocyanate-conjugated swine anti-rabbit antibodies for specific staining. By switching between two different optical filter packages in the microscope, only one sample was needed for determining both total and specific counts of bacteria. False-positive counts and other artifacts that occur with antibody staining were easily distinguished when individual fluorescent particles were checked for DAPI fluorescence. The method for applying the general stain to membrane filters was performed quickly and simply by using a DAPI-soaked polypropylene filter that lay beneath the Nuclepore filter which collected the sample.  相似文献   

9.
Fluorescent particles are used for a diverse number of biochemical assays including intracellular imaging, cellular tracking, as well as detection of a variety of biomolecules. They are typically prepared by postpolymerization conjugations of dyes onto preformed particles. Herein we report the synthesis of aminomethyl-functionalized fluorescent particles via the synthesis and application of polymerizable fluorescein monomers. These monomers allowed high and controllable fluorophore loading into the particles, resulting in enhanced fluorescence properties in comparison with more commonly used carboxyfluorescein conjugated particles. Furthermore, the particles were rapidly taken up by cells with enhanced fluorescence. The herein presented results demonstrate the advantages of dye polymerization in contrast with more conventional conjugation strategies for fluorescent particle generation with applications in the life sciences.  相似文献   

10.
In microarrays experiments, a serious limitation is the unreliability of low signal intensities data and the lack of reproducibility for the resulting ratios between samples and controls. Most of the light emitted by a fluorophore at the air/glass interface of a glass slide is absorbed by the glass so just a part of the emitted fluorescence is detected. To improve the sensitivity of the fluorescence detection of both common fluorophores Cy3 and Cy5 in DNA microarrays and fluorescent cell analyses, we have designed a multi layer mirror with alternative thin layers of SiO2 and HfO2. This mirror (MOTL) prevents fluorescence absorption, allows the simultaneous enhancement of the fluorescence signals and increases the dynamic range of the slides. Using MOTL slides, Cy3 and Cy5 intensities are enhanced by 5-8-fold, consequently, the fluorescence analysis becomes easier and should allow the detection of low copy number genes or weakly fluorescent cells. With the same approach, other multiple optical thin layer slides could be designed for other series of fluorophores, extending the field of their applications.  相似文献   

11.
Molecular beacon is a DNA probe containing a sequence complementary to the target that is flanked by self-complementary termini, and carries a fluorophore and a quencher at the ends. We used the fluorescein and dabcyl as fluorophore and quencher respectively, and studied with DFT calculations at the GGA/DNP level, and taking into account DFT dispersion corrections by the Grimme and Tkatchenko-Scheffler (TS) schemes, the distance, where the most favorable energetic interaction between the fluorophore and quencher in conjugated form occurs. This distance occurs at a separation distance of 29.451?? between the centers of Dabcyl and fluorescein employing the TS DFT dispersion correction scheme, indicating FRET efficiency around 94.28?%. The calculated emission spectra of the conjugated pair in water indicated that the emission and absorption spectrum overlap completely and thus no fluorescence can be observed due to the fluorescence resonance energy transfer (FRET) effect. The DFT results confirmed the experimentally observing fluorescence quenching of the fluorescein-dabcyl conjugated system by FRET.  相似文献   

12.
Here we describe a non-invasive method for rapid and highly reproducible genotyping of transgenic mammals with ubiquitous expression of fluorophore reporters. Hair samples from transgenic mice and pigs with systemic expression of the fluorophore reporter Venus were analyzed with a fluorescence microscope in few minutes. The hair samples can be preserved for long-term storage at ambient temperature conditions. This non-invasive method is useful for genotyping of transgenic large animals and contributes to animal welfare by reducing stress and discomfort of the animals during sample collection.  相似文献   

13.
Photobleaching and related photochemical processes are recognized experimental barriers to quantification of fluorescence by microscopy. We have measured the kinetics of photobleaching of fluorophores in living and fixed cells and in microemulsions, and have demonstrated the spatial variability of these processes within individual cells. An inverted fluorescence microscope and a high-sensitivity camera, together with high-speed data acquisition by a computer-controlled image processor, have been used to control precisely exposure time to excitation light and to record images. To improve the signal-to-noise ratio, 32 digital images were integrated. After correction for spatial variations in camera sensitivity and background fluorescence, the images of the relative fluorescence intensities for 0.065 micron2 areas in the object plane were obtained. To evaluate photobleaching objectively, an algorithm was developed to fit a three-parameter exponential equation to 20 images recorded from the same microscope field as a function of illumination time. The results of this analysis demonstrated that the photobleaching process followed first-order reaction kinetics with rate constants that were spatially heterogeneous and varied, within the same cell, between 2- and 65-fold, depending on the fluorophore. The photobleaching rate constants increased proportionally with increasing excitation intensity and, for benzo(a)pyrene, were independent of probe concentration over three orders of magnitude (1.25 microM to 1.25 mM). The propensity to photobleach was different with each fluorophore. Under the cellular conditions used in these studies, the average rates of photobleaching decreased in this order: N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol greater than acridine orange greater than rhodamine-123 greater than benzo(a)pyrene greater than fluorescein greater than tetramethylrhodamine greater than 1,1'dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine. The photobleaching appears to be an oxidation reaction, in that the addition of saturated solutions of Na2S2O5 to mineral oil microemulsions eliminated photobleaching of N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol or benzo(a)pyrene. We identified experimental conditions to observe, without detectable photobleaching, fluorophores in living cells, which can not be studied anaerobically. Useful images were obtained when excitation light was reduced to eliminate photobleaching, as determined from zero-time images calculated from the exponential fit routine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A pulsed dye laser was used as an excitation source in a fluorescent treponemal antibody absorption (FTA-ABS) test. A high precision in quantitative fluorescence was obtained with this high-power excitation source coupled to an electronic detection system and a storage oscilloscope by standardization of fluorescence evaluation and through elimination of human error. One 0.4-mus pulse exposure was sufficient to record fluorescence intensity data on the oscilloscope. Absence of fading of fluorescence after repeated excitation permitted multiple readings of the same microscope field. Almost 100% reproducible results were obtained for the FTA-ABS test with 40 samples. Electronic detection of fluorescence and the high sensitivity obtained with laser excitation raise doubts about the relative value of quantitative immunofluorescence in the FTA-ABS test.  相似文献   

15.
Summary Certain neurons in the nervous system of the malacostracan crustaceans give rise to a predominantly green and a sparse yellow fluorophore in the histochemical fluorescence method of Falck-Hillarp. The same applies to the whole of Crustacea. The green fluorophore is probably a catecholamine; the yellow to brown-yellow has not yet been identified.The biogenic amine responsible for the green fluorescence, besides being found in diffusely distributed fibres, also appears in distinct areas of fibre concentrations in the central nervous system. The protocerebrum of the malacostracans contains three areas: the central body and two areas in the top of the brain, one anterior and one posterior. The latter two are not recognized as separate areas in ordinary histological preparations. In addition, the optic neuropiles are fluorescent, some with a distinct stratification of the fluorophore. The deuto and tritocerebrum and the ventral nerve cord also contain monoaminergic neurons. Of the brightly fluorescent areas in the whole of Crustacea, only the central body consistently exists in all species. The other areas of concentrated fluorescent neuropile are restricted to smaller taxonomic units and differ from each other. p The monoaminergic neurons in Crustacea are sensory, motor, and internuncial, and also belong to a fourth type which mimics the neurosecretory neurons in neurohaemal organs. Only one example of a monoaminergic sensory neuron is known (in Anemia, a non-malacostracan, Aramant and Elofsson 1976), a few motor and a few neurosecretory mimics (the latter in malacostracans). Most are internuncials. Acknowledgement. We have enjoyed the laboratory facilities at the Department of Histology, Faculty of Medicine, and express our sincere thanks to Prof. Bengt Falck.-Grants from the Swedish Natural Science Research Council (2760-007) and the Swedish Medical Research Council (04X-712) supported the work  相似文献   

16.
Development of protein labeling techniques with small molecules is enthralling because this method brings promises for triumph over the limitations of fluorescent proteins in live cell imaging. This technology deals with the functionalization of proteins with small molecules and is anticipated to facilitate the expansion of various protein assay methods. A new straightforward aggregation and elimination-based technique for a protein labeling system has been developed with a versatile emissive range of fluorophores. These fluorophores have been applied to show their efficiency for protein labeling by exploiting the same basic principle. A genetically modified version of class A type β-lactamase has been used as the tag protein (BL-tag). The strength of the aggregation interaction between a fluorophore and a quencher plays a governing role in the elimination step of the quencher from the probes, which ultimately controls the swiftness of the protein labeling strategy. Modulation in the elimination process can be accomplished by the variation in the nature of the fluorophore. This diversity facilitates the study of the competitive binding order among the synthesized probes toward the BL-tag labeling method. An aggregation and elimination-based BL-tag technique has been explored to develop an order of color labeling from the equimolar mixture of the labeling probe in solutions. The qualitative and quantitative determination of ordering within the probes toward labeling studies has been executed through SDS-PAGE and time-dependent fluorescence intensity enhancement measurements, respectively. The desirable multiple-wavelength fluorescence labeling probes for the BL-tag technology have been developed and demonstrate broad applicability of this labeling technology to live cell imaging with coumarin and fluorescein derivatives by using confocal microscopy.  相似文献   

17.
We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.  相似文献   

18.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

19.
Widefield fluorescence microscopy with extended resolution   总被引:1,自引:1,他引:0  
Widefield fluorescence microscopy is seeing dramatic improvements in resolution, reaching today 100 nm in all three dimensions. This gain in resolution is achieved by dispensing with uniform Köhler illumination. Instead, non-uniform excitation light patterns with sinusoidal intensity variations in one, two, or three dimensions are applied combined with powerful image reconstruction techniques. Taking advantage of non-linear fluorophore response to the excitation field, the resolution can be further improved down to several 10 nm. In this review article, we describe the image formation in the microscope and computational reconstruction of the high-resolution dataset when exciting the specimen with a harmonic light pattern conveniently generated by interfering laser beams forming standing waves. We will also discuss extensions to total internal reflection microscopy, non-linear microscopy, and three-dimensional imaging.  相似文献   

20.
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号