首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments were carried out on cultured hippocampal neurons using a patch-clamp technique in the whole-cell configuration. We studied the characteristics of regular series of action potentials (APs), which were generated with a low frequency by inhibitory and excitatory interneurons after their direct stimulation with long-lasting (500 msec) current pulses. Nearly all parameters of the evoked impulse activity (except the frequency of generation and duration of APs) in excitatory and inhibitory neurons were significantly different. According to immunocytochemical analysis, Kv1.2- and Kv4.2-type potassium channels were expressed in the membrane of excitatory neurons (granular cells), and somatostatin was present in all these cells. As to inhibitory interneurons, only a part of such cells (large units) demonstrated immunopositivity with respect to somatostatin. In inhibitory neurons, only Kv1.2-type potassium channels were expressed. Therefore, mechanisms responsible for the ability of hippocampal interneurons to generate impulse activity under conditions of direct stimulation (in our experiments, regular low-frequency series of APs) in inhibitory and excitatory neurons are rather dissimilar. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 207–216, May–June, 2005.  相似文献   

2.
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.  相似文献   

3.
The new antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which blocks responses to kainate and quisqualate, has been used in conjunction with D-2-amino-5-phosphonovalerate (APV), which blocks selectively responses to N-methyl-D-aspartate (NMDA), to determine the role of excitatory amino acid receptors in synaptic transmission. An excitatory postsynaptic potential (EPSP)-inhibitory postsynaptic potential (IPSP) sequence was evoked in CA1 neurons by stimulation of the Schaffer collateral-commissural pathway in rat hippocampal slices. CNQX (10 microM) substantially reduced the EPSP without having any effect on input resistance or membrane potential. The IPSP was also reduced provided that the stimulating electrode was place approximately 1 mm from the recording electrode. The EPSP that remained in the presence of CNQX had characteristics of an NMDA receptor-mediated potential; it had a slow timecourse, summated at high frequencies, was blocked reversibly by APV, increased greatly in size in Mg2+-free medium, and showed an anomalous voltage dependence in Mg2+-containing medium. In the presence of CNQX, an APV-sensitive polysynaptic GABAergic IPSP could be evoked, indicating that NMDA receptors can mediate suprathreshold EPSPS in inhibitory interneurons. It is suggested that either NMDA or non-NMDA receptors can, under different circumstances, mediate the synaptic excitation of pyramidal neurons and inhibitory interneurons in area CA1 of the hippocampus.  相似文献   

4.
Summary The transmitter content of identified inhibitory interneurons in the flight system of the locust, Locusta migratoria, has been characterized using antibodies raised against protein-conjugated gamma aminobutyric acid. Identified flight neurons were filled with the fluorescent dye, Lucifer Yellow. Serial sections of dye-filled neurons were incubated with an antibody to gamma aminobutyric acid which was subsequently tagged with a fluorescent marker. Excitatory motoneurons to wing muscles and 13 flight interneurons (3 excitatory, 7 inhibitory, and 3 with unknown synaptic effect) were examined. Neither the moto-neurons nor any of the 3 excitatory interneurons contained immunoreactive material. Six of the 7 inhibitory interneurons did contain immunoreactive material. All the neurons which contained immunoreactive material and whose synaptic effect is known were inhibitory. We conclude that most of the inhibitory flight interneurons which have been described use gamma aminobutyric acid as their transmitter. Interestingly, at least 1 set of interneurons known to be inhibitory does not use gamma aminobutyric acid. We predict that the 2 interneurons which do contain immunoreactive material and whose synaptic effect is not yet known will be found to have inhibitory roles in the operation of the flight circuitry.  相似文献   

5.
Semyanov A  Kullmann DM 《Neuron》2000,25(3):663-672
Synapses between hippocampal interneurons are an important potential target for modulatory influences that could affect overall network behavior. We report that the selective group III metabotropic receptor agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depresses GABAergic transmission to interneurons more than to pyramidal neurons. The L-AP4-induced depression is accompanied by changes in trial-to-trial variability and paired-pulse depression that imply a presynaptic site of action. Brief trains of stimuli in Schaffer collaterals also depress GABAergic transmission to interneurons. This depression persists when GABA(B) receptors are blocked, is enhanced by blocking glutamate uptake, and is abolished by the group III metabotropic receptor antagonist (alpha-methylserine-O-phosphate (MSOP). The results imply that GABAergic transmission among interneurons is modulated by glutamate spillover from excitatory afferent terminals.  相似文献   

6.
Actions of excitatory amino acids on mesencephalic trigeminal neurons   总被引:4,自引:0,他引:4  
Mesencephalic trigeminal (MeV) neurons are primary sensory neurons of which the cell soma is located within the brainstem, and is associated with synaptic contacts. In previous studies it has been reported that these cells are resistant to kainic acid excitotoxicity, and have little or no responsiveness to exogenously applied glutamate or selective agonists. In an in vitro slice preparation with intracellular recording, we have found that these cells respond to pressure-applied glutamate, N-methyl-D-aspartic acid (NMDA), kainate (KA), and (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). The kainate and AMPA responses appear to be mediated by different receptors, at least in part, since they exhibit differing sensitivity to an AMPA receptor selective antagonist. The agonists generally evoke larger responses than glutamate and exhibit a long-duration desensitization requiring approximately 10 min for full recovery. Some cross-desensitization between the glutamate agonists is also observed. Mesencephalic trigeminal neurons exhibit high-frequency oscillatory activity during depolarizations that approach threshold potentials, and these could combine with transmitter-induced depolarizations to enhance the excitability of these cells. Previous reports of nonsensitivity to glutamate and to kainate excitotoxicity are attributable to relatively small responses, and to the desensitization expressed by these neurons.  相似文献   

7.
Electrical responses of 25 presumptive hippocampal inhibitory interneurons to stimulation of two afferent systems of fibers, originating in the contralateral hippocampus, were investigated in acute experiments on unanesthetized, immobilized rabbits. Inhibitory neurons were found to have a relatively ineffective inhibitory input as well as a very effective excitatory input. On interaction between synaptic processes during spontaneous and evoked activity the excitatory input clearly predominates over the inhibitory and plays a definite role in behavior of the neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 580–587, November–December, 1980.  相似文献   

8.
C T Livsey  S Vicini 《Neuron》1992,8(4):745-755
In the hilar region of the rat hippocampus, large spontaneous excitatory postsynaptic currents (sEPSCs) mediated by non-NMDA glutamate receptors are present in both excitatory spiny mossy cells and inhibitory aspiny hilar interneurons, making these neurons ideal candidates for a comparative study using the tight seal whole-cell recording technique. Although sEPSCs have similar amplitude distributions, the rise and decay times are significantly slower in spiny versus aspiny neurons. Similar kinetic differences are observed in synaptic currents evoked by mossy fiber stimulation. These results demonstrate a physiological difference between the excitatory drive to excitatory and inhibitory neurons in the hilus that certainly contributes to differences in synaptic strength and that may be applicable to other brain regions. Furthermore, since the development or modification of individual spines or groups of spines may affect synaptic strength, these results may be pivotal in establishing a role for spines in modulating synaptic activity.  相似文献   

9.
Summary The relationship between synaptic function and structure was examined for 32 spiking interneurons (13 inhibitory and 19 excitatory) in the meso- and metathoracic ganglia of the locust, Locusta migratoria. In no instance was the structure of an excitatory interneuron similar to that of an inhibitory interneuron. However, 12 of the 13 inhibitory interneurons shared a number of structural features, namely a ventromedially located soma, axon(s) projecting into contralateral connective(s), and a laterally bowed primary neurite. Structurally the excitatory interneurons formed a more heterogeneous group. Even so, 12 of the 19 had a combination of structural features in common, namely laterally located somata and axon(s) projecting into contralateral connective(s). The clear differences in structure of the two main groups of inhibitory and excitatory interneurons suggest that other neurons with structures similar to members of these two groups can be classified as inhibitory and excitatory, respectively. Thus we propose that structure predicts synaptic function for two distinct groups of interneurons in the thoracic ganglia of locusts. Present address: Department of Biology, McGill University, Montreal, Qubeck, Canada  相似文献   

10.
We investigated the role of the HIV-1 protein Tat in AIDS-associated dementia, by studying its toxicity on rat cortical and hippocampal neurons in vitro. We evaluated the involvement of astroglial cells and of caspase transduction pathway in determining Tat toxicity. Here we report that synthetic Tat(1-86) induced apoptotic death on cultured rat neurons in a time-dependent manner that was not influenced by glial coculture, and that was abolished by blocking caspase transduction pathway. A microfluorimetric analysis on the Tat excitatory properties on neurons, and its effect on intracellular calcium concentrations, revealed that Tat(1-86) induced increase in cytoplasmic free calcium concentrations in rat hippocampal and cortical neurons. This effect required extracellular calcium and was differently reduced by voltage dependent calcium channel blockers and both NMDA and non-NMDA glutamate receptors antagonists. Furthermore, we observed that Tat(1-86)-treated neurons showed increased sensitivity to the glutamate excitotoxicity. Thus, the Tat-induced neuronal injury seems to occur through a direct interaction of the protein with neurons, requires activation of caspases, and is likely to derive from Tat(1-86)-induced calcium loads and disruption of glutamatergic transmission.  相似文献   

11.
Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis. Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory” roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons, causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level. New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.  相似文献   

12.
Kainate receptors (KARs) are crucial for the regulation of both excitatory and inhibitory neurotransmission, but little is known regarding the mechanisms controlling KAR surface expression. We used super ecliptic pHluorin (SEP)-tagged KAR subunit GluR6a to investigate real-time changes in KAR surface expression in hippocampal neurons. Sindbis virus-expressed SEP-GluR6 subunits efficiently co-assembled with native KAR subunits to form heteromeric receptors. Diffuse surface-expressed dendritic SEP-GluR6 is rapidly internalized following either N-methyl-d-aspartate or kainate application. Sustained kainate or transient N-methyl-d-aspartate application resulted in a slow decrease of base-line surface KAR levels. Surprisingly, however, following the initial loss of surface receptors, a short kainate application caused a long lasting increase in surface-expressed KARs to levels significantly greater than those prior to the agonist challenge. These data suggest that after initial endocytosis, transient agonist activation evokes increased KAR exocytosis and reveal that KAR surface expression is bidirectionally regulated. This process may provide a mechanism for hippocampal neurons to differentially adapt their physiological responses to changes in synaptic activation and extrasynaptic glutamate concentration.  相似文献   

13.
A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse visual cortex. Interestingly, we found opposite alterations in the excitability of non fast-spiking (Non Fs) and fast-spiking (Fs) interneurons in acute cortical slices from injured animals. Non Fs interneurons displayed a depolarized membrane potential and a higher frequency of spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, Fs interneurons showed a reduced sEPSCs amplitude. The observed downscaling of excitatory synapses targeting Fs interneurons may prevent the recruitment of this specific population of interneurons to the hyperexcitable network. This mechanism is likely to seriously affect neuronal network function and to exacerbate hyperexcitability but it may be important to protect this particular vulnerable population of GABAegic neurons from excitotoxicity.  相似文献   

14.
The fundamental equations for the interaction between neurons used in mathematical biophysics seem at first incompatible with the actual neurophysiological findings on the synaptic transmission. It is shown, however, that those equations may be readily interpreted in terms of accepted neurophysiological views. What has been termed “synapse” in mathematical biophysics must be regarded as a complicated network of internuncial neurons. It is shown that, under rather conditions, the number of those interneurons willstatistically vary with time according to the differential equation postulated for the excitatory and inhibitory factors. The latter are thus interpreted as the number of excitatory and inhibitory interneurons.  相似文献   

15.
Abstract: The ability of ethanol to enhance GABAA receptor function remains controversial; conflicting observations have been made even in the same brain region, and when using apparently similar methodologies. In this study we characterized a single protocol variable, the initial incubation temperature of brain slices, that had dramatic effects on the ethanol sensitivity of GABAA inhibitory postsynaptic currents (IPSCs) recorded from rat hippocampal CA1 pyramidal neurons. Incubation of hippocampal slices at relatively low temperatures (11–15°C) immediately after slice preparation significantly affected a number of physiological and biochemical parameters. Such slices showed a decrease in extracellular inhibitory postsynaptic potential amplitude, a significant increase in the ethanol sensitivity of GABAA IPSCs in CA1 pyramidal neurons, no change in pentobarbital or flunitrazepam potentiation of IPSCs, and an increase in basal protein kinase C (PKC) activity relative to slices incubated at 31–33°C. In addition, the increase in ethanol sensitivity of GABAA IPSCs was blocked by chelerythrine, a selective inhibitor of PKC. These results suggest that differences in hippocampal slice incubation protocols may have contributed to the disparate results of previous investigations of ethanol modulation of GABAA receptor-mediated synaptic transmission in the rat hippocampus. In addition, these findings provide further evidence that PKC activity positively modulates the interaction between ethanol and GABAA receptors in the mammalian brain.  相似文献   

16.
As is known, hippocampal pyramidal neurons are highly sensitive to cerebral ischemia, while some other hippocampal neurons (particularly, interneurons) survive and keep their functional activity under these conditions for a longer time. We studied interneurons of the rat hippocampal organotypic culture after 30-min-long oxygen-glucose deprivation (OGD) using immunohistochemical approaches. Four and 24 h after OGD, the somata of interneurons with no signs of degeneration (revealed by propidium iodide, PI, staining) were immunopositive to antibodies against glutamic acid decarboxylase isoform 67 (GAD67) and to an extracellular domain of a7 nicotinic acetylcholine receptor (nAChR) but negative with respect to choline acetyltransferase (ChAT). GAD67/nAChR-positive interneurons were abundant within all layers of the hippocampal CA1-CA4 zones and also in the dentate gyrus. Co-localized GAD67/nAChR immunopositivity was also observed on numerous punctuate terminals close to the somata of pyramidal neurons stained by PI. After OGD followed by incubation with a blocker of gap junctions, carbenoxolone, only single PI-stained units were revealed in the pyramidal layer. In experiments with connexin 36 cyan fluorescent protein (Cx36-CFP) on gene-reporter mice, we have found that the combination of GAD67/nAChR immunopositivity and ChAT negativity in the hippocampus is specific for the interneuronal somata expressing Cx36-CFP, a component of electrotonic gap contacts in the neuronal networks. Our results indicate that OGD-resistant hippocampal interneurons display co-localization of GAD67, a7 nAChR, and Cx36-CFP. By these neurochemical features, OGD-resistant neurons can be classified as inhibitory GABA-ergic acetylcholine-sensitive interneurons able to couple electrotonically with other hippocampal units through Cx36-CFP-containing gap junctions. The existence of hippocampal interneurons coexpressing the above factors shows that further investigations towards elucidation of cooperative endogenic mechanisms responsible for cerebral neuroresistance are expedient.  相似文献   

17.
In the CNS, fine processes of astrocytes often wrap around dendrites, axons and synapses, which provides an interface where neurons and astrocytes might interact. We have reported previously that selective Ca(2+) elevation in astrocytes, by photolysis of caged Ca(2+) by o-nitrophenyl-EGTA (NP-EGTA), causes a kainite receptor-dependent increase in the frequency of spontaneous inhibitory post-synaptic potentials (sIPSCs) in neighboring interneurons in hippocampal slices. However, tetrodotoxin (TTX), which blocks action potentials, reduces the frequency of miniature IPSCs (mIPSCs) in interneurons during Ca(2+) uncaging by an unknown presynaptic mechanism. In this study we investigate the mechanism underlying the presynaptic inhibition. We show that Ca(2+) uncaging in astrocytes is accompanied by a decrease in the amplitude of evoked IPSCs (eIPSCs) in neighboring interneurons. The decreases in eIPSC amplitude and mIPSC frequency are prevented by CPPG, a group II/III metabotropic glutamate receptor (mGluR) antagonist, but not by the AMPA/kainate and NMDA receptor antagonists CNQX/CPP. Application of either the group II mGluR agonist DCG IV or the group III mGluR agonist L-AP4 decreased the amplitude of eIPSCs by a presynaptic mechanism, and both effects are blocked by CPPG. Thus, activation of mGluRs mediates the effects of Ca(2+) uncaging on mIPSCs and eIPSCs. Our results indicate that Ca(2+)-dependent release of glutamate from astrocytes can activate distinct classes of glutamate receptors and differentially modulate inhibitory synaptic transmission in hippocampal interneurons.  相似文献   

18.
Domoic acid, an excitatory amino acid structurally related to kainic acid, has been shown to be responsible for the severe intoxication presented, in 1987, by more than one hundred and fifty people having eaten mussels grown in Prince Edward Island (Canada). Unitary extracellular recordings were obtained from pyramidal neurons of the CA3 region of the rat dorsal hippocampus. The excitatory effects of microiontophoretic applications of domoic acid and of the agonists of the two other subtypes of glutamatergic receptors, quisqualate and N-methyl-D-aspartate, were compared on intact and colchicine-lesioned sides. Similar to what has been previously found for kainate, the colchicine lesion of the mossy fiber projections induced a 95% decrease of the neuronal responsiveness to domoic acid, whereas the effect of quisqualate was unchanged and that of N-methyl-D-aspartate was only slightly decreased. These results provide further electrophysiological evidence that domoic acid is a potent agonist of kainate receptors and that it may produce its neuroexcitatory and neurotoxic effects, in the hippocampal CA3 region, through activation of kainate receptors located on the mossy fiber terminals.  相似文献   

19.
The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16–20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.  相似文献   

20.
The electrophysiological actions of somatostatin (somatotropin release inhibiting factor; SRIF) were investigated in the in vitro hippocampal slice preparation. Intracellular recordings were obtained from pyramidal neurons in area CA1 in slices of hippocampus from guinea pigs and rabbits. Somatostatin, applied via micropressure ejection to CA1 pyramidal-cell somata, was primarily excitatory. The effects, however, were quite variable, with nearly all cells displaying pronounced tachyphylaxis. A majority of cells was depolarized by SRIF, but hyperpolarizations or biphasic depolarization/hyperpolarization responses were also recorded. Only minimal conductance changes were associated with the SRIF-induced voltage changes. Depletion of SRIF, by injection of the intact animal with cysteamine several hours before preparing slices, resulted in no obvious abnormalities in hippocampal slice electrophysiology. Our results obtained with application of exogenous SRIF are consistent with the concept that SRIF acts as an excitatory neurotransmitter/neuromodulator in hippocampus. However, our attempts to demonstrate endogenous SRIF action have thus far been unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号