首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A protein which binds dehydroepiandrosterone sulfate and estrone sulfate was detected in the cytosolic fraction of female Guinea-pig liver. It is characterized by a molecular mass of 14,400 Da, its affinity for DHEA sulfate (KD = 8.8 microM) and estrone sulfate (KD = 8.5 microM), and its lack of affinity for free steroids such as dehydroepiandrosterone or estrone. It is eluted by gel filtration on Sephadex G-50 simultaneously with the inhibitor of microsomal DHEA sulfatase recently described by some of us. This protein could be implicated in the intracellular transport or in the metabolism of sulfated steroids.  相似文献   

3.
4.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

5.
J Cuppoletti  I H Segel 《Biochemistry》1975,14(21):4712-4718
The active transport of inorganic sulfate by an ATP sulfurylase-negative strain of Penicillium notatum is promoted by H+ ions and metal ions (divalent metal ions being more effective than monovalent metal ions). Initial velocity studies suggest that H+ and SO4(2-) add to the carrier in an ordered sequence (H+ before SO4(2-)), with H+ at equilibrium with free carrier and carrier-H+ complex. The linear reciprocal plots and replots suggest a 1:1 stoichiometry between H+ and SO4(2-). Ca2+ and other divalent metal ions stimulate sulfate transport markedly in buffered suspensions of low ionic strength. The kinetics of the Ca2+/SO4(2-) interaction suggest that Ca2+ (like H+) adds to the carrier before SO4(2-) and is at equilibrium with free carrier and carrier-Ca2+ complex. The linear reciprocal plots and replots indicate a 1:1 stoichiometry between Ca2+ and SO4(2-). Thus the fully loaded carrier-SO4(2-) -Ca2+ -H+ complex has a net positive charge relative to that of the free carrier, a fact consistent with the chemiosmotic hypothesis of membrane transport. The kinetics of the H+/Ca2+ interaction point to a random A-B (rapid equilibrium), ordered C sequence with A = H+, B = Ca2+, and C = SO4(2-). Selenate (an alternate substrate competitive with sulfate) is an uncompetitive inhibitor with respect to Ca2+, in agreement with the suggested mechanism. Internal charge balance is not accomplished by a stoichiometric coaccumulation of Ca2+ and SO4(2-). Sulfate transport does, however, promote 45Ca2+ uptake. A significant fraction of the added Ca2+ is bound by the mycelial surface. Binding is extremely rapid, but reversible.  相似文献   

6.
Saponification of cerebroside sulfate (sulfatide) by refluxing with 1 N KOH in 90% n-butanol for 1 h yielded ceramide, sphingosine, lysosulfatide (psychosine-3'-sulfate ester) and a hitherto unknown compound. The latter compound was identified as 3,6-anhydrogalactosyl sphingosine (3',6'-anhydropsychosine) from its mass spectrum. The structure of lysosulfatide was confirmed by reacylating it to sulfatide by condensing it with lignoceroyl chloride. The resulting sulfatide, which was chromatographically identical to control sulfatides, was not oxidized by periodate. The sulfatide was also permethylated and methanolyzed. The sugar moiety obtained was identified as methyl 2,4,6-tri-O-methylgalactoside by gas-liquid chromatography and thin-layer chromatography. The presence of the sulfate group in lysosulfatide was further confirmed by IR spectroscopy and the presence of radioactivity when it was prepared from [35S]sulfatide. The effect of the sulfate group on cleavage of the galactoside linkage and on the formation of the 3,6-anhydro derivative is discussed.  相似文献   

7.
1. The interaction of isolated rat hepatocytes with exogenous 3H-labeled chondroitin-4-sulfate and dermatan sulfate and with biosynthetically 35S-labeled proteoglycans secreted by cultured rat liver fat-storing cells has been studied. 2. All ligands are bound by hepatocytes in a concentration-dependent manner. Scatchard-plot analysis of the data revealed the existence of high- and low-affinity binding modes. 3. The cell-bound exogenous [3H]glycosaminoglycans could be displaced by each unlabeled ligand and by heparin, whereas displacement of the endogenous material was less effective. 4. Binding of all ligands to hepatocytes increased with time. For the exogenous glycosaminoglycans the two- to threefold amount was retained at 37 degrees C as compared to 4 degrees C; it was markedly reduced by pretreatment of the cells with trypsin. 5. Degradation of the exogenous ligands could be detected neither for the cell-bound fraction nor for the free glycosaminoglycans in the culture medium. 6. The binding of the ligands to hepatocytes is viewed as a cell-matrix interaction. Its possible pathobiochemical relevance in liver fibrosis or neoplasia is discussed.  相似文献   

8.
Here we show that a large chondroitin sulfate proteoglycan, versican, derived from a renal adenocarcinoma cell line ACHN, binds L-selectin, P-selectin, and CD44. The binding was mediated by the interaction of the chondroitin sulfate (CS) chain of versican with the carbohydrate-binding domain of L- and P-selectin and CD44. The binding of versican to L- and P-selectin was inhibited by CS B, CS E, and heparan sulfate (HS) but not by any other glycosaminoglycans tested. On the other hand, the binding to CD44 was inhibited by hyaluronic acid, chondroitin (CH), CS A, CS B, CS C, CS D, and CS E but not by HS or keratan sulfate. A cross-blocking study indicated that L- and P-selectin recognize close or overlapping sites on versican, whereas CD44 recognizes separate sites. We also show that soluble L- and P-selectin directly bind to immobilized CS B, CS E, and HS and that soluble CD44 directly binds to immobilized hyaluronic acid, CH, and all the CS chains examined. Consistent with these results, structural analysis showed that versican is modified with at least CS B and CS C. Thus, proteoglycans sufficiently modified with the appropriate glycosaminoglycans should be able to bind L-selectin, P-selectin, and/or CD44.  相似文献   

9.
10.
11.
12.
A technique is presented for the preparation of three major proteoglycans from 14-day embryonic chicken retinas following their culture overnight with [35S]sulfate and either [3H]glucosamine or [3H]serine. Homogenization of the tissue in saline permitted extraction of heterogeneous soluble proteoglycans separately from most of the heparan sulfate proteoglycans. The latter were extracted from the 140,000g pellet with 0.5% Triton X-100 in 8 M urea. The medium plus the saline and urea-detergent extracts were separated from low-molecular-weight contaminants, and fractionated into two peaks of radioactivity on Sephacryl S-300 in saline with 3 M urea and 0.5% Triton X-100. The proteoglycans were isolated directly from these fractions on DEAE-Sephacel, and subjected to ultrafiltration concentration and then further purification on cesium chloride density gradient centrifugation in 4 M guanidine hydrochloride. A further step involving cetylpyridinium chloride precipitation was examined, but it resulted in essentially no further purification. The fractionations separated a large chondroitin sulfate/dermatan sulfate proteoglycan from the culture medium that was excluded from S-300 and of low buoyant density; a large heparan sulfate proteoglycan from the urea-detergent extract that was also excluded from S-300 and of low buoyant density; and two smaller and possibly related heparan sulfate proteoglycans. One was found in the medium and showed low to intermediate buoyant density; the other was isolated from the urea-detergent extract and showed a significantly higher buoyant density, associated with a lower protein content. The saline extract contained both of the two larger proteoglycans and only minor amounts of the smaller molecules.  相似文献   

13.
Highly purified cerebroside sulfate activator from pig kidneys was characterized by a number of chemical and biological procedures. Methods for chemical modifications were evaluated in an attempt to obtain biologically active derivatives. Iodination, dabsylation, and to a lesser degree reductive methylation provided useful products with good retention of cerebroside sulfate activator activity. Other procedures resulted in largely inactive derivatives or losses in both protein and biological activities. Attempts at renaturation of cerebroside sulfate activator subjected to various denaturing conditions appeared to be successful in many instances, but it was uncertain if the protein structure had actually been disrupted. The binding of cerebroside sulfate by activator was estimated by gel filtration under conditions similar to those of its assay. The formation of a relatively stable 1:1 complex was observed, collaborating results with the human protein. The complex was stable enough to be isolated and shown to be an efficient substrate for arylsulfatase A. The effectiveness of the pig kidney cerebroside sulfate activator for correcting the metabolic defect in activator-deficient human fibroblasts was compared with human materials. The pig kidney protein was taken up more efficiently by the cells and resulted in a better metabolic correction than material from human liver, but was somewhat less effective than a preparation from human urine.  相似文献   

14.
Serum and early-morning urinary levels of estrone sulfate during the menstrual cycle were measured by a direct radioimmunoassay without hydrolysis. These levels were high and showed prominent peaks [serum, 2.67 +/- 0.37 ng/ml (mean +/- SE); urine, 5.82 +/- 2.3 micrograms/l] around the day of the preovulatory estradiol-17 beta peak, and increased again during the luteal phase. Following intravenous injection of estrone sulfate, serum estrone sulfate, estrone and estradiol-17 beta were measured. The conversion of estrone sulfate to estrone and/or estradiol-17 beta was very small during their transit in the general circulation.  相似文献   

15.
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.  相似文献   

16.
Summary Hydrogenase and nitrogenase activities of sulfate-reducing bacteria allow their adaptation to different nutritional habits even under adverse conditions. These exceptional capabilities of adaptation are important factors in the understanding of their predominant role in problems related to anaerobic metal corrosion. Although the D2–H+ exchange reaction indicated thatDesulfovibrio desulfuricans strain Berre-Sol andDesulfovibrio gigas hydrogenases were reversible, the predominant activity in vivo was hydrogen uptake. Hydrogen production was restricted to some particular conditions such as sulfate or nitrogen starvation. Under diazotrophic conditions, a transient hydrogen evolution was followed by uptake when dinitrogen was effectively fixed. In contrast, hydrogen evolution proceeded when acetylene was substituted as the nitrogenase substrate. Hydrogen can thus serve as an electron donor in sulfate reduction and nitrogen metabolism.  相似文献   

17.
Sulfur is an essential element for microorganisms and it can be obtained from varied compounds, sulfate being the preferred source. The first step for sulfate assimilation, sulfate uptake, has been studied in several bacterial species. This article reviews the properties of different bacterial (and archaeal) transporters for sulfate, molybdate, and related oxyanions. Sulfate uptake is carried out by sulfate permeases that belong to the SulT (CysPTWA), SulP, CysP/(PiT), and CysZ families. The oxyanions molybdate, tungstate, selenate and chromate are structurally related to sulfate. Molybdate is transported mainly by the high-affinity ModABC system and tungstate by the TupABC and WtpABC systems. CysPTWA, ModABC, TupABC, and WtpABC are homologous ATP-binding cassette (ABC)-type transporters with similar organization and properties. Uptake of selenate and chromate oxyanions occurs mainly through sulfate permeases.  相似文献   

18.
Heparan sulfate (HS) proteoglycans play critical roles in a wide variety of biological processes such as growth factor signaling, cell adhesion, wound healing, and tumor metastasis. Functionally important interactions between HS and a variety of proteins depend on specific structural features within the HS chains. The fruit fly (Drosophila melanogaster) is frequently applied as a model organism to study HS function in development. Previous structural studies of Drosophila HS have been restricted to disaccharide composition, without regard to the arrangement of saccharide domains typically found in vertebrate HS. Here, we biochemically characterized Drosophila HS by selective depolymerization with nitrous acid. Analysis of the generated saccharide products revealed a novel HS design, involving a peripheral, extended, presumably single, N-sulfated domain linked to an N-acetylated sequence contiguous with the linkage to core protein. The N-sulfated domain may be envisaged as a heparin structure of unusually low O-sulfate content.  相似文献   

19.
20.
Four patients with an unusual form of spondyloepiphyseal dysplasia excreted in the urine undersulfated chondroitin 6-sulfate (Biochem. Med. 7, 415–423, 1973). The sera of these patients show a low activity of PAPS — chondroitin sulfate sulfotransferase, while the undersulfated chondroitin sulfate present in their urine is a much better acceptor of 35SO4 than standard chondroitin sulfate when they are incubated with [35S]PAPS and normal sulfotransferases. These results suggest that in these patients the skeletal lesions are secondary to a defect in the synthesis of chondroitin sulfate involving specifically the sulfotransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号