首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Precise targeting of mitochondrial precursor proteins to mitochondria requires receptor functions of Tom20, Tom22, and Tom70 on the mitochondrial surface. Tom20 is a major import receptor that recognizes preferentially mitochondrial presequences, and Tom70 is a specialized receptor that recognizes presequence-less inner membrane proteins. The cytosolic domain of Tom22 appears to function as a receptor in cooperation with Tom20, but how its substrate specificity differs from that of Tom20 remains unclear. To reveal possible differences in substrate specificities between Tom20 and Tom22, if any, we deleted the receptor domain of Tom20 or Tom22 in mitochondria in vitro by introducing cleavage sites for a tobacco etch virus protease between the receptor domains and transmembrane segments of Tom20 and Tom22. Then mitochondria without the receptor domain of Tom20 or Tom22 were analyzed for their abilities to import various mitochondrial precursor proteins targeted to different mitochondrial subcompartments in vitro. The effects of deletion of the receptor domains on the import of different mitochondrial proteins for different import pathways were quite similar between Tom20 and Tom22. Therefore Tom20 and Tom22 are apparently involved in the same step or sequential steps along the same pathway of targeting signal recognition in import.  相似文献   

2.
Mcl-1 functions at an apical step in many regulatory programs that control cell death. Although the mitochondrion is one major subcellular organelle where Mcl-1 functions, the molecular mechanism by which Mcl-1 is targeted to mitochondria remains unclear. Here, we demonstrate that Mcl-1 is loosely associated with the outer membrane of mitochondria. Furthermore, we demonstrate that Mcl-1 interacts with the mitochondrial import receptor Tom70, and such interaction requires an internal domain of Mcl-1 that contains an EELD motif. A Tom70 antibody that blocks Mcl-1-Tom70 interaction blocks mitochondrial import of Mcl-1 in vitro. Furthermore, Mcl-1 is significantly less targeted to mitochondria in Tom70 knockdown than in the control cells. Similar targeting preference is also observed for the DM mutant of Mcl-1 whose mutation at the EELD motif markedly attenuates its Tom70 binding activity. Together, our results indicate that the internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway.  相似文献   

3.
Most mitochondrial membrane proteins are synthesized in the cytosol and must be delivered to the organelle in an unfolded, import competent form. In mammalian cells, the cytosolic chaperones Hsp90 and Hsp70 are part of a large cytosolic complex that deliver the membrane protein to the mitochondrion by docking with the import receptor Tom70. These two abundant chaperones have other functions in the cell suggesting that the specificity for the targeting of mitochondrial proteins requires the addition of specific factors within the targeting complex. We identify Tom34 as a cochaperone of Hsp70/Hsp90 in mitochondrial protein import. We show that Tom34 is an integral component with Hsp70 and Hsp90 in the large complex. We also demonstrate the role of Tom34 in the mitochondrial import process, as the addition of an excess of Tom34 prevents efficient mitochondrial translocation of precursor proteins that have requirements for Hsp70/Hsp90. Tom34 exhibits an affinity for mitochondrial preproteins of the Tom70 translocation pathway as demonstrated by binding assays using in vitro translated proteins as baits. In addition, we examined the specificity and the size of different complex cytosolic machines. Separation of different radiolabeled cell-free translated proteins on Native-PAGE showed the presence of a high molecular weight complex which binds hydrophobic proteins. Importantly we show that the formation of the chaperone cytosolic complex that mediates the targeting of proteins to the mitochondria contains Tom34 and assembles in the presence of a fully translated substrate protein.  相似文献   

4.
Mitochondria contain the translocator of the outer mitochondrial membrane (TOM) for protein entry into the organelle, and its subunit Tom40 forms a protein-conducting channel. Here we report the role of Tom40 in protein translocation across the membrane. The site-specific photocrosslinking experiment revealed that translocating unfolded or loosely folded precursor segments of up to 90 residues can be associated with Tom40. Purified Tom40 bound to non-native proteins and suppressed their aggregation when they are prone to aggregate. A denatured protein bound to the Tom40 channel blocked the protein import into mitochondria. These results indicate that, in contrast to the nonstick tunnel of the ribosome for polypeptide exit, the Tom40 channel offers an optimized environment to translocating non-native precursor proteins by preventing their aggregation.  相似文献   

5.
The translocase of the outer mitochondrial membrane (TOM) complex is the general entry site into the organelle for newly synthesized proteins. Despite its central role in the biogenesis of mitochondria, the assembly process of this complex is not completely understood. Mim1 (mitochondrial import protein 1) is a mitochondrial outer membrane protein with an undefined role in the assembly of the TOM complex. The protein is composed of an N-terminal cytosolic domain, a central putative transmembrane segment (TMS) and a C-terminal domain facing the intermembrane space. Here we show that Mim1 is required for the integration of the import receptor Tom20 into the outer membrane. We further investigated what the structural characteristics allowing Mim1 to fulfil its function are. The N- and C-terminal domains of Mim1 are crucial neither for the function of the protein nor for its biogenesis. Thus, the TMS of Mim1 is the minimal functional domain of the protein. We show that Mim1 forms homo-oligomeric structures via its TMS, which contains two helix-dimerization GXXXG motifs. Mim1 with mutated GXXXG motifs did not form oligomeric structures and was inactive. With all these data taken together, we propose that the homo-oligomerization of Mim1 allows it to fulfil its function in promoting the integration of Tom20 into the mitochondrial outer membrane.  相似文献   

6.
The great majority of mitochondrial proteins are synthesized by cytosolic ribosomes and then imported into the organelle post-translationally. The translocase of the outer membrane (TOM) is a proteinaceous machinery that contains surface receptors for preprotein recognition and also serves as the main entry gateway into mitochondria. Mitochondrial targeting requires various cytosolic factors, in particular the molecular chaperones Hsc70/Hsp70 and Hsp90. The chaperone activity of Hsc70/Hsp70 and Hsp90 occurs in coordinated cycles of ATP hydrolysis and substrate binding, and is regulated by a number of co-chaperone proteins. The import receptor Tom70 is a member of the tetratricopeptide repeat (TPR) co-chaperone family and contains a conserved TPR clamp domain for interaction with Hsc70 and Hsp90. Such interaction is essential for the initiation of the import process. This review will discuss the roles of Hsc70 and Hsp90 in mitochondrial import and summarize recent progress in understanding these pathways.  相似文献   

7.
A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 A. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.  相似文献   

8.
Tom70 and Mdm10 are mitochondrial outer membrane proteins. Tom70 is implicated in the import of proteins from the cytosol into the mitochondria in Saccharomyces cerevisiae and Neurospora crassa. Mdm10 is involved in the morphology and distribution of mitochondria in S. cerevisiae. Here we report on the characterization of the genes encoding these proteins in the filamentous fungus Podospora anserina. The two genes were previously genetically identified through a systematic search for nuclear suppressors of a degenerative process displayed by the AS1-4 mutant. The PaTom70 protein shows 80% identity with its N. crassa homolog. The PaMdm10 protein displays 35.9% identity with its S. cerevisiae homolog, and cytological analyses show that the PaMDM10-1 mutant exhibits giant mitochondria, as does the S. cerevisiae mdm10-1 mutant. Mutations in PaTOM70 and PaMDM10 result in the accumulation of specific deleted mitochondrial genomes during the senescence process of the fungus. The phenotypic properties of the single- and double-mutant strains suggest a functional relationship between the Tom70 and Mdm10 proteins. These data emphasize the role of the mitochondrial outer membrane in the stability of the mitochondrial genome in an obligate aerobe, probably through the import process.  相似文献   

9.
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and may play an important role in the pathogenesis of disease. It has been shown that amyloid beta peptide (Aβ) and amyloid precursor protein (APP) interact with mitochondria contributing to the mitochondrial dysfunction in AD. Prevention of abnormal protein targeting to mitochondria can protect normal mitochondrial function, increase neuronal survival and at the end, ameliorate symptoms of AD and other neurodegenerative disorders. First steps of mitochondrial protein import are coordinated by molecular chaperones Hsp70 and Hsp90 that bind to the newly synthesized mitochondria‐destined proteins and deliver them to the protein import receptors on the surface of organelle. Here, we have described the development of a novel compound named GMP‐1 that disrupts interactions between Hsp70/Hsp90 molecular chaperones and protein import receptor Tom70. GMP‐1 treatment of SH‐SY5Y cells results in decrease in mitochondria‐associated APP and protects SH‐SY5Y cells from toxic effect of Aβ1‐42 exposure. Experiments in drosophila and mice models of AD demonstrated neuroprotective effect of GMP‐1 treatment, improvement in memory and behaviour tests as well as restoration of mitochondrial function.  相似文献   

10.
The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.  相似文献   

11.
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.The mitochondrion plays important roles in cell physiology. The mitochondrion functions as the “cellular power house” by generating most of the supply of ATP for the cell. In addition, the mitochondrion is involved in a number of critical cellular processes including the synthesis of metabolites, lipid metabolism, free radical production, and metal ion homeostasis. The mitochondrion consists of four compartments, the outer membrane, the inner membrane, the intermembrane space, and the mitochondrial matrix. The mitochondrion contains a large number of proteins (1), but only a few of these are translated within the mitochondrion (2). Therefore, the majority of the mitochondrial proteins are synthesized in the cytosol and translocated into the mitochondrion.The mitochondrial preproteins contain specific targeting signals to reach the correct compartments within the mitochondria. The mitochondrial matrix preproteins contain N-terminal targeting sequences that form the short amphipathic helices (26). On the other hand, some mitochondrial proteins of the inner and outer membrane contain internal targeting signals within the mature proteins (7). The mitochondrion has developed a set of delicate translocons to transport the preproteins into the mitochondrial compartments, one translocase of the outer membrane (TOM)2 and two translocases of the inner membrane (TIM23 and TIM22) (4, 5, 8). The TOM complex has two surface receptors, Tom20 and Tom70 (9, 10). Tom20 recognizes the N-terminal mitochondrial targeting signals from the preproteins, whereas Tom70 binds to internal targeting sequences of preproteins such as the multi-transmembrane carrier proteins residing in the mitochondrial membranes (912). The crystal structure of Saccharomyces cerevisiae Tom70 revealed that Tom70 contained 11 TPR motifs, and the TPR motifs were clustered into two domains. The three TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70/Hsp90, whereas the C-terminal domain of Tom70p contains a large preprotein-binding pocket (13).Molecular chaperones Hsp70 and Hsp90 play important roles in targeting the preproteins to TOM complex (14). Hsp70 and Hsp90 can protect these preproteins from aggregation in the cytosol (15). The C-terminal EEVD motifs of Hsp70/Hsp90 may interact directly with the N-terminal domain of Tom70p to target the preproteins to TOM complex (13, 14, 16). The C-terminal EEVD motif of Hsp70/Hsp90 has been indicated to bind several proteins containing TPR motifs including Hop and CHIP. The complex structures for the Hsp70/Hsp90 EEVD motif and Hop and CHIP TPR regions have been determined (1721).Tom71 (also known as Tom72) was identified as a homologue with Tom70 with high amino acid sequence identity (>50%) (22). Tom71 shares overlapping functions with Tom70 to transfer the preproteins and maintain the mitochondrial morphology (23, 24). In this study, we have determined the crystal structures of S. cerevisiae Tom71 and the complexes of Tom71 and Hsp70/Hsp90 C-terminal EEVD motifs. These structures suggest that the Hsp70/Hsp90 binding to Tom70/Tom71 may keep Tom70/Tom71 in the open state for receiving preproteins. The Hsp70/Hsp90 interactions may also increase the volume of the preprotein-binding pocket of Tom70/Tom71 and prepare Tom70/Tom71 for preprotein loading.  相似文献   

12.
Mitochondrial protein traffic requires precise recognition of the mitochondrial targeting signals by the import receptors on the mitochondrial surface including a general import receptor Tom20 and a receptor for presequence-less proteins, Tom70. Here we took a proteome-wide approach of mitochondrial protein import in vitro to find a set of presequence-containing precursor proteins for recognition by Tom70. The presequences of the Tom70-dependent precursor proteins were recognized by Tom20, whereas their mature parts exhibited Tom70-dependent import when attached to the presequence of Tom70-independent precursor proteins. The mature parts of the Tom70-dependent precursor proteins have the propensity to aggregate, and the presence of the receptor domain of Tom70 prevents their aggregate formation. Therefore Tom70 plays the role of a docking site for not only cytosolic chaperones but also aggregate-prone substrates to maintain their solubility for efficient transfer to downstream components of the mitochondrial import machineries.  相似文献   

13.
Insertion of newly synthesized proteins into or across the mitochondrial outer membrane is initiated by import receptors at the surface of the organelle. Typically, this interaction directs the precursor protein into a preprotein translocation pore, comprised of Tom40. Here, we show that a prominent beta-barrel channel protein spanning the outer membrane, human voltage- dependent anion-selective channel (VDAC), bypasses the requirement for the Tom40 translocation pore during biogenesis. Insertion of VDAC into the outer membrane is unaffected by plugging the translocation pore with a partially translocated matrix preprotein, and mitochondria containing a temperature-sensitive mutant of Tom40 insert VDAC at the nonpermissive temperature. Synthetic liposomes harboring the cytosolic domain of the human import receptor Tom20 efficiently insert newly synthesized VDAC, resulting in transbilayer transport of ATP. Therefore, Tom20 transforms newly synthesized cytosolic VDAC into a transmembrane channel that is fully integrated into the lipid bilayer.  相似文献   

14.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

15.
Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the β-barrel channel Tom40 and additional subunits each with single, α-helical transmembrane segments. How α-helical transmembrane segments might be assembled onto a transmembrane β-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.  相似文献   

16.
17.
T Komiya  S Rospert  G Schatz    K Mihara 《The EMBO journal》1997,16(14):4267-4275
We have reconstituted the early steps of precursor targeting to mitochondria in a defined and soluble system consisting of the cytosolic domains of the yeast mitochondrial import receptors Tom20 and Tom70, precursor to bovine adrenal adrenodoxin (which has a cleavable targeting signal) and rat liver cytosolic chaperones hsp70 and mitochondrial import-stimulating factor (MSF). The Tom70 domain only bound the precursor in the presence of MSF, yielding a precursor-MSF-Tom70 complex; ATP hydrolysis by MSF released MSF and generated a precursor-Tom70 complex whose formation was inhibited by an excess of a functional presequence peptide, but not by 150 mM NaCl. In the presence of the Tom20 domain, ATP caused transfer of the precursor from the precursor-MSF-Tom70 complex to Tom20. The Tom20 domain alone only bound the precursor in the presence of hsp70; hsp70 itself was not incorporated into the resulting complex. Formation of the Tom20-precursor complex was inhibited by excess presequence peptide or by 150 mM NaCl. Similar results were obtained with the ADP/ATP carrier and porin precursors, which both lack a cleaved targeting signal. Correct targeting of a precursor to mitochondrial import receptors thus requires cytosolic chaperones, irrespective of the presence or absence of a cleavable presequence.  相似文献   

18.
Signal-anchored proteins are a class of mitochondrial outer membrane proteins that expose a hydrophilic domain to the cytosol and are anchored to the membrane by a single transmembrane domain in the N-terminal region. Like the vast majority of mitochondrial proteins, signal-anchored proteins are synthesized on cytosolic ribosomes and are subsequently imported into the organelle. We have studied the mechanisms by which precursors of these proteins are recognized by the mitochondria and are inserted into the outer membrane. The import of signal-anchored proteins was found to be independent of the known import receptors, Tom20 and Tom70, but to require the major Tom component, Tom40. In contrast to precursors destined to internal compartments of mitochondria and those of outer membrane beta-barrel proteins, precursors of signal-anchored proteins appear not to be inserted via the general import pore. Taken together, we propose a novel pathway for insertion of these proteins into the outer membrane of mitochondria.  相似文献   

19.
Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity   总被引:2,自引:0,他引:2  
Mitochondrial preproteins are synthesized in the cytosol with N-terminal signal sequences (presequences) or internal targeting signals. Generally, preproteins with presequences are initially recognized by Tom20 (translocase of the outer membrane) and, subsequently, by Tom22, whereas hydrophobic preproteins with internal targeting signals are first recognized by Tom70. Recent studies suggest that Tom70 associates with molecular chaperones, thereby maintaining their substrate preproteins in an import-competent state. However, such a function has not been reported for other Tom component(s). Here, we investigated a role for Tom20 in preventing substrate preproteins from aggregating. In vitro binding assays showed that Tom20 binds to guanidinium chloride unfolded substrate proteins regardless of the presence or absence of presequences. This suggests that Tom20 functions as a receptor not only for presequences but also for mature portions exposed in unfolded preproteins. Aggregation suppression assays on citrate synthase showed that the cytosolic domain of Tom20 has a chaperone-like activity to prevent this protein from aggregating. This activity was inhibited by a presequence peptide, suggesting that the binding site of Tom20 for presequence is identical or close to the active site for the chaperone-like activity. The cytosolic domain of Tom22 also showed a similar activity for citrate synthase, whereas Tom70 did not. These results suggest that the cytosolic domains of Tom20 and Tom22 function to maintain their substrate preproteins unfolded and prevent them from aggregating on the mitochondrial surface.  相似文献   

20.
Tom70 is a mitochondrial protein import receptor composed of 11 tetratricopeptide repeats (TPRs). The first three TPRs form an N-terminal domain that recruits heat shock protein family chaperones, while the eight C-terminal TPRs form a domain that receives, from the bound chaperone, mitochondrial precursor proteins destined for import. Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) analysis characterized Tom70 as an elongated monomer. A model for the Tom70 monomer was proposed based on the alternate interpretation of the domain pairings observed in the crystal structure of the Tom70 dimer and refined against the SAXS data. In this “open” model of the Tom70 monomer, the chaperone- and precursor-binding sites are exposed and lay side by side on one face of the molecule. Fluorescence anisotropy measurements indicated that monomeric Tom70 can bind both chaperone and precursor peptides and that chaperone peptide binding does not alter the affinity of Tom70 for the precursor peptide. SAXS was unable to detect any shape change in Tom70 upon chaperone binding. However, molecular modeling indicated that chaperone binding is incompatible with Tom70 dimer formation. It is proposed that the Tom70 monomer is the functional unit mediating initial chaperone docking and precursor recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号