首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic lipidomics of the nucleus   总被引:3,自引:0,他引:3  
Once nuclear envelope membranes have been removed from isolated nuclei, around 6% of mammalian cell phospholipid is retained within the nuclear matrix, which calculations suggest may occupy 10% of the volume of this subcellular compartment. It is now acknowledged that endonuclear phospholipid, largely ignored for the past 40 years, provides substrate for lipid-mediated signaling events. However, given its abundance, it likely also has other as yet incompletely defined roles. Endonuclear phosphatidylcholine is the predominant phospholipid comprising distinct and highly saturated molecular species compared with that of the whole cell. Moreover, this unusual composition is subject to tight homeostatic maintenance even under conditions of extreme dietary manipulation, presumably reflecting a functional requirement for highly saturated endonuclear phosphatidylcholine. Recent application of new lipidomic technologies exploiting tandem electrospray ionization mass spectrometry in conjunction with deuterium stable isotope labeling have permitted us to probe not just molecular species compositions but endonuclear phospholipid acquisition and turnover with unparalleled sensitivity and specificity. What emerges is a picture of a dynamic pool of endonuclear phospholipid subject to autonomous regulation with respect to bulk cellular phospholipid metabolism. Compartmental biosynthesis de novo of endonuclear phosphatidylcholine contrasts with import of phosphatidylinositol synthesized elsewhere. However, irrespective of the precise temporal-spatial-dynamic relationships underpinning phospholipid acquisition, derangement of endonuclear lipid-mediated signaling from these parental phospholipids halts cell growth and division indicating a pivotal control point. This in turn defines the manipulation of compartmentalized endonuclear phospholipid acquisition and metabolism as intriguing potential targets for the development of future antiproliferative strategies.  相似文献   

2.
Chromatin-associated phospholipids are well recognized. A report that catalytically active endonuclear CTP:choline-phosphate cytidylyltransferase alpha is necessary for cell survival questions whether endonuclear, CDP-choline pathway phosphatidylcholine synthesis may occur in situ. We report that chromatin from human IMR-32 neuroblastoma cells possesses such a biosynthetic pathway. First, membrane-free nuclei retain all three CDP-choline pathway enzymes in proportions comparable with the content of chromatin-associated phosphatidylcholine. Second, following supplementation of cells with deuterated choline and using electrospray ionization mass spectrometry, both the time course and molecular species labeling pattern of newly synthesized endonuclear and whole cell phosphatidylcholine revealed the operation of spatially separate, compositionally distinct biosynthetic routes. Specifically, endogenous and newly synthesized endonuclear phosphatidylcholine species are both characterized by a high degree of diacyl/alkylacyl chain saturation. This unusual species content and synthetic pattern (evident within 10 min of supplementation) are maintained through cell growth arrest by serum depletion and when proliferation is restored, suggesting that endonuclear disaturated phosphatidylcholine enrichment is essential and closely regulated. We propose that endonuclear phosphatidylcholine synthesis may regulate periodic nuclear accumulations of phosphatidylcholine-derived lipid second messengers. Furthermore, our estimates of saturated phosphatidylcholine nuclear volume occupancy of around 10% may imply a significant additional role in regulating chromatin structure.  相似文献   

3.
Matrix effects resulting in ion suppression or enhancement have been shown to be a source of variability and inaccuracy in bioanalytical mass spectrometry. Glycerophosphocholines may cause significant matrix ionization effects during quantitative LC/MS/MS analysis and are known to fragment to form characteristic ions (m/z 184) in electrospray mass spectrometry. This ion was used to monitor ion suppression effects in the determination of hydrocodone and pseudoephedrine in human plasma as a means to track and avoid these effects. The m/z 184 ion fragment was detected in both plasma extracts and solutions of phosphatidylcholine. Post-column infusion studies showed that the ion suppression for both drugs and internal standards correlated with the elution of phospholipids. HPLC conditions were adjusted to chromatographically resolve the peaks of interest from the phospholipids. Upon repeated injection, the elution time of the phospholipids decreased while elution of the analyte peaks remained unchanged. This resulted in co-elution and significantly affected peak shape and internal standard response for the analytes. It was decided to use the phospholipid fragment to monitor this matrix effect in validation samples. The resulting method demonstrated intra-day and inter-day precision within 4.5 and 5.6% for hydrocodone and pseudoephedrine, respectively, and accuracy within 8.9 and 8.7% for hydrocodone, and pseudoephedrine, respectively. There was no statistically significant difference in the internal standard response for the determination with and without monitoring the phospholipid fragment ion. We found that monitoring the phospholipid fragment was useful in method development to avoid the matrix effects, and in routine analysis to provide a practical way to ensure the avoidance of matrix effects in each individual sample.  相似文献   

4.
Hunt AN  Clark GT  Neale JR  Postle AD 《FEBS letters》2002,530(1-3):89-93
Deuterated choline-d9 labelling of IMR-32 cells enabled comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis after 96 h polyunsaturated fatty acid supplementation. Surprisingly, while cell phosphatidylcholine synthesis and remodelling reflected a pattern of polyunsaturated fatty acid accretion, the saturated endonuclear phosphatidylcholine pool was only transiently labelled with polyunsaturates. Periodic endonuclear accumulations of the lipid second messenger diacylglycerol, mobilised from unsaturated phosphatidylinositol or saturated phosphatidylcholine, accompany cell proliferation. Non-specific incorporation into endonuclear phosphatidylcholine and selective removal or remodelling of unsaturated molecular species may form part of a single ‘off switch’ recycling all endonuclear diacylglycerol accumulations.  相似文献   

5.
The labeling of retina ganglion cell and optic tectum phospholipids was determined in chickens given an intraocular injection of 32P and then either exposed to light or maintained in the dark. Significantly higher labeling was found in the optic tectum phospholipids of light-exposed compared with dark-maintained animals after 3-24 h of labeling. In the ganglion cells, the labeling of phospholipids increased in dark with respect to light at 15 and 30 min of labeling; from 60 min to 24 h, the labeling of phospholipids was significantly higher in light with respect to dark, even if the precursor pool showed a higher labeling in dark at all times studied. When labeling was allowed to proceed in the dark for 30 min and then half of the animals were exposed to light for 15 min, the labeling of ganglion cell phospholipids of light-exposed animals was significantly higher than those of animals kept in the dark. No individual phospholipid accounted for the differences observed in the labeling of the total phospholipid pool. These results are interpreted as an increase in the biosynthesis of phospholipids in the ganglion cell somas in light with respect to dark.  相似文献   

6.
PLASMA AND PHAGOSOME MEMBRANES OF ACANTHAMOEBA CASTELLANII   总被引:20,自引:13,他引:7       下载免费PDF全文
Plasma membranes were isolated from the ameba Acanthamoeba castellanii by low-speed velocity centrifugation followed by equilibrium centrifugation in a sucrose gradient. The isolated membranes had a high ratio of sterol to phospholipid (0.98 moles/mole) and of phospholipid to protein (0.43 mg/mg). The plasma membranes had very low concentrations of DNA, RNA, lipid inositol, and glycerides. Glycolipids and glycoproteins were enriched in the plasma membranes relative to their concentrations in the whole cell. The plasma membranes were also judged to be of high purity by the absence, or very low level, of enzymatic activities considered to be indicative of other cell membranes, and by electron microscope examination. Alkaline phosphatase and 5'-nucleotidase activities were enriched in the plasma membranes 13-fold relative to the whole homogenate and had higher specific activities in the plasma membranes than in any other cell fractions. A Mg++ adenosine triphosphatase (ATPase) was enriched sixfold in the plasma membranes relative to the whole homogenate. The phospholipids of the plasma membranes contained more phosphatidylethanolamine and phosphatidylserine and less phosphatidylcholine than did the phospholipids of the whole cells. There were differences in the fatty acid compositions of corresponding phospholipids in the plasma membranes and whole cells but no difference in the ratios of total saturated to unsaturated fatty acids. The membranes of phagosomes isolated from amebae that had ingested polystyrene latex had essentially the same phospholipid, sterol, and enzymatic composition as plasma membranes.  相似文献   

7.
Signal transductions via periodic generation and mobilisation of lipid second messengers within the nuclear matrix of eukaryotic cells have focused renewed attention on their precursor phospholipids' location, structure, form and function. The nuclear matrix contains and supports dynamic pools of phosphatidylcholine and phosphatidylinositol which serve as parent molecules of lipid second messengers but also of other phospholipids requiring cyclical replacement as cells proliferate. Applications of new, highly sensitive and specific analytical methodologies based on tandem electrospray ionisation mass spectrometry and the use of stable isotopes have allowed both static and dynamic lipidomic profiling of these endonuclear phospholipid pools. Together with more conventional enzymatic analyses and evaluation of the effect of specific "knock-out" of phospholipid transfer capacity, a number of important principles have been established. Specifically, a compartmental capacity to synthesise and remodel highly saturated phosphatidylcholine exists alongside transport mechanisms that facilitate the nuclear import of phosphatidylinositol and other phospholipids synthesised elsewhere within the cell. Subnuclear fractionation and the use of newly emerging techniques for sensitive lipidomic profiling of polyphosphoinositides, diacylglycerols and phosphatidate molecular species offer the potential for further significant advances in the near future.  相似文献   

8.
Abstract: In vivo rates of palmitate incorporation into brain phospholipids were measured in awake rats following programmed intravenous infusion of unesterified [9,10-3H]palmitate to maintain constant plasma specific activity. Animals were killed after 2–10 min of infusion by microwave irradiation and analyzed for tracer distribution in brain phospholipid and phospholipid precursor, i.e., brain unesterified palmitate and palmitoyl-CoA, pools. [9,10-3H]Palmitate incorporation into brain phospholipids was linear with time and rapid, with >50% of brain tracer in choline-containing glycerophospholipids at 2 min of infusion. However, tracer specific activity in brain phospholipid precursor pools was low and averaged only 1.6–1.8% of plasma unesterified palmitate specific activity. Correction for brain palmitoyl-CoA specific activity increased the calculated rate of palmitate incorporation into brain phospholipids (0.52 nmol/s/g) by ∼60-fold. The results suggest that palmitate incorporation and turnover in brain phospholipids are far more rapid than generally assumed and that this rapid turnover dilutes tracer specific activity in brain palmitoyl-CoA pool owing to release and recycling of unlabeled fatty acid from phospholipid breakdown.  相似文献   

9.
The aim of this study was to obtain detailed information on phospholipids (PL) of the medically important Candida species and to determine their possible chemotaxonomic significance. Lipids were extracted from 22 strains representing 8 Candida species and their PL molecular species distributions were determined by Fast Atom Bombardment Mass Spectroscopy (FAB MS) in negative ion mode. Fifteen major lower mass peaks (m/z 221 to 289) were attributable to the expected presence of carboxylate anions and 24 major higher mass peaks (m/z 557 to 837) were attributable to phospholipid anions. Major carboxylate peaks were of the following m/z and identities : 253, C16:1; 255, C16:0; 277, C18:3; 279, C18:2; 281, C18:1; and 283, C18:0. The most abundant peaks consistent with the presence of phospholipid molecular species anions include those of m/z 673, 743, 833, 834 and 836 tentatively identified as phosphatidic acid (PA) (34:1), phosphatidylglycerol (PG) (34:3), phosphtidylinositol (PI) (34:2) and two unknown molecular species. This profile is diagnostic for the genus Candida. Quantitative differences were observed between different Candida species. Thus, polar lipid molecular species distribution in Candida spp. has chemotaxonomic significance, especially so in the case of carboxylate anions.  相似文献   

10.
1. Platelet phospholipid compositions were studied in four species of phocid seals consuming herring or herring and shrimp and in human subjects consuming a normal mixed diet. 2. There were no major differences in platelet phospholipid, cholesterol and protein levels between different species of seal nor between seals and human subjects, nor in the relative abundance of the individual types of phospholipid. 3. The seal platelet phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE), were greatly enriched in the omega 3 fatty acid, eicosapentaenoic acid (EPA) and depressed in arachidonic acid (AA) relative to the corresponding human platelet phospholipids. 4. Much less accumulation of EPA in phosphatidylserine (PS) and phosphatidylinositol (PI) was found. 5. The EPA contents of the individual seal platelet phospholipids exhibited considerable differences (including EPA discrimination from PI) but gave patterns which were generally similar to those reported for human volunteers consuming fish/fish oils enriched in EPA. 6. These results suggest that the seal platelet may be a useful model for studying the metabolism and function of the omega 3 fatty acids, such as EPA, in relation to platelet reactivity, phospholipid turnover and the formation of AA- and EPA-derived eicosanoids.  相似文献   

11.
The effect of acidic phospholipids on the activity of a Na(+)-dependent amino acid transporter (A system) from Ehrlich ascites cell plasma membranes was examined. Plasma membranes were solubilized in cholate/urea and reconstituted with Ba2(+)-precipitated asolectin (soybean phospholipid free of anionic phospholipids) replenished with different acidic phospholipids. In the absence of added acidic phospholipids, transport activity was very low. However, three acidic lipids [cardiolipin greater than phosphatidic acid (PA) greater than phosphatidylinositol] were capable of restoring transport activity (in the order given) to proteoliposomes made from Ba2(+)-precipitated asolectin, while other acidic phospholipids (phosphatidylserine and phosphatidylglycerol) were much less active in this respect. For restoration of optimal activity, PA containing at least one unsaturated fatty acyl moiety, particularly in the beta position, was required. PA containing only saturated fatty acids in the beta and gamma positions was largely inactive. No difference in restoration of function was observed on varying the saturated fatty acyl chain length in PA from 10 carbons to 18 carbons. The specific effects of PA on the A-system transporter were not shared by the Na(+)-independent amino acid exchange system (L system) or the glucose transport system. Treatment with poly(ethylene glycol) 8000 was shown to reduce the nonspecific permeability of the reconstituted proteoliposomes and to enhance Na(+)-dependent amino acid transport.  相似文献   

12.
Liquid chromatographic class separations of common cellular phospholipids combined with plasma spray ionization of the effluents were investigated. Comparison with true thermospray ionization involving ammonium acetate buffering revealed a gain in total ionization in the plasma spray of a factor of approximately 10 using a cation-exchange column and a solvent mixture consisting of acetonitrile-methanol-water (400:100:15, v/v). Plasma spray ionization studies of bovine brain polyphosphoinositides interrelated by the phosphate content in the inositol moeity showed almost identical monoglyceride and diglyceride ion clusters, indicating possibilities of studying the biochemical turnover of such phospholipids. Plasma spray ionization liquid chromatography-mass spectrometry of bacterial membrane phospholipids (Pseudomonas fluorescens) revealed possibilities of obtaining indications of individual fatty acid compositions from the spectra of the phosphatidylinositol and phosphatidylethanolamine fractions present. Conventional gas chromatographic fatty acid analysis agreed with the direct mass spectrometric structure elucidations. Interestingly, the two phospholipid classes had different relative fatty acid compositions with a significantly higher degree of cyclic fatty acids in the phosphatidyl ethanolamines. Plasma spray ionization yielded linear dose-response curves for both the monoglyceride and diglyceride fragment signals in the selected-ion monitoring mode. The detection limit for the monoglyceride and diglyceride species of phosphatidylcholine under the chromatographic and mass spectrometric conditions used was found to be in the picogram range.  相似文献   

13.
Based on quantitative high-performance liquid chromatographic analyses of molecular species in selected phospholipid subclasses from culture human umbilical vein endothelial cells, the relative degree of unsaturation was ethanolamine plasmalogens greater than phosphatidylethanolamine greater than phosphatidylcholine. A total of 36 different molecular species were identified in the phosphatidylcholine fraction. Interestingly, the phosphatidylcholine contained a significant amount (11.7%) of the dipalmitoyl species, a lipid normally associated with lung surfactant. The arachidonoyl-containing molecular species of phosphatidylserine/inositol were labeled to the highest extent and the ethanolamine plasmalogens contained the lowest specific radioactivity after incubating [3H]arachidonic acid with human endothelial cells for 4 h. Within each phospholipid subclass the arachidonoyl species where both acyl groups of the phospholipid are unsaturated (20:4-20:4, 18:2-20:4 + 16:1-20:4, and 18:1-20:4) had higher specific radioactivities, after labeling with [3H]arachidonic acid, than those that contained saturated aliphatic chains (16:0-20:4 and 18:0-20:4). This indicates that the unsaturated species have higher turnover rates.  相似文献   

14.
Lipids are not only components of cell nucleus membranes, but are also found in the membrane-depleted nuclei where they fulfill special functions. We have investigated the lipid composition of membrane-depleted rat liver nuclei obtained by incubation with low Triton X-100 concentrations of 0.04% and 0.08%, which rendered them unaltered or hardly altered. Under these conditions, 26% of proteins and 22% of phospholipids were recovered. The main phospholipids were phosphatidylcholine > phosphatidylethanolamine > phosphatidylinositol = or > phosphatidylserine and sphingomyelin (in decreasing concentrations). The fatty acid components of total lipids and phosphatidylcholine were mainly unsaturated. Over 40% belonged to the n-6 series (arachidonic > or = 25% and linoleic 15%); approximately 40% corresponded to saturated acids and <10% were monoenoic. Endonuclear phosphatidylcholine was built up by 16 molecular species, the most abundant being 18:0-20:4 (32%), 16:0-20:4 (19%), 16:0-18:2 (13%), and 18:0-18:2 (11%). The fatty acid composition and phosphatidylcholine molecular species distribution in the membrane-depleted nucleus of rat liver showed patterns similar to the whole nucleus, mitochondria, microsomes, and homogenate of the parent liver cells, suggesting that endonuclear lipid pool composition is mainly determined by a liver organ profile.  相似文献   

15.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET.  相似文献   

16.
In mammalian cells, arachidonate release and paf-acether formation are frequently associated. The alkyl-acyl-GPC has been proposed as an important source for released arachidonic acid and arachidonate-containing alkylacyl-GPC species as unique precursor for paf-acether. However, the specificity of precursor pools either concerning arachidonic acid or paf-acether is still a matter of controversy. We studied the relationship between the precursor pools for both autacoids in antigenically-stimulated cultured mast cells. We took advantage of the particular arachidonate turnover rate in each phospholipid to investigate the role of alkyl-arachidonyl-GPC in the supply of arachidonic acid by using newly and previously [14C]arachidonate-labeled cells. The specific activity of the released arachidonate was reduced 2-fold following overnight cell incubation, whereas labeling in alkyl-arachidonoyl-GPC was only slightly modified and never corresponded to that of released arachidonate when newly or previously labeled cells were triggered with the antigen. These results are not in favor of a major role for alkyl-arachidonoyl-GPC in supplying arachidonate. In contrast, by using previously labeled cells, we demonstrated that all arachidonate-containing phospholipids were involved in the release of arachidonic acid. The pattern of alkyl chains in alkyl-arachidonoyl-GPC, as well as in total alkylacyl-GPC, is unique since it consists mainly of 18:1 (more than 55%), whereas the 16:0 represents only about 30% of total alkyl chains. Therefore, we analyzed paf-acether molecular composition in order to compare it to the alkyl composition of the precursor pools. The content in 18:1 species of paf-acether, as measured by bioassay (aggregation of rabbit platelets), was always lower than that of 16:0 species and then did not correspond to the alkyl composition of the precursor. These data suggest that the enzymes involved in paf synthesis might be specific for 16:0 alkyl chains of precursor pool.  相似文献   

17.
Phospholipids of Lactobacillus spp.   总被引:3,自引:1,他引:2       下载免费PDF全文
Lactobacillus phospholipid molecular species were analyzed by mass spectrometry. Prominent anions were consistent with presence of the phosphatidylglycerols PG(37:2), PG(36:2), PG(35:1), PG(34:1), and PG(33:1). Diglycosyldiacylglycerol molecular species were also observed, although nitrogen-containing phospholipids were absent. An anion of m/z 759 was derived from an apparently novel type of lipid.  相似文献   

18.
When aminophospholipids with only saturated and monounsaturated fatty acids esterified to the glycerol backbone were labeled with isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, it was found that they could be readily detected as N-methylpiperazine-amide-tagged aminophospholipids using a precursor scan of the stable isotope reporter ion (m/z 114-117) formed by tandem mass spectrometry/mass spectrometry. However, it was found in the current study that these precursor ion scans are not useful in determining the changes of aminophospholipids with polyunsaturated fatty acids (PUFAs) esterified to the glycerol backbone due to the presence of interfering ions in the reporter ion region. Therefore, a method was developed using tandem mass spectrometry/mass spectrometry/mass spectrometry (MS(3)) to obtain reporter ion ratios that were not distorted by interfering ions present in the collision-induced dissociation spectra of nontagged aminophospholipids with PUFAs. This new MS(3) method for N-methylpiperazine- amide-tagged aminophospholipids was used to examine the fate of diacyl, ether, or plasmalogen glycerophosphoethanolamine (GPEtn) species after exposure of human polymorphonuclear leukocytes to A23187 and granulocyte macrophage-colony-stimulating factor/formyl-methionyl-leucyl-phenylalanine stimuli, which can induce eicosanoid biosynthesis, to follow those GPEtn molecular species which were the source of arachidonic acid released. Upon stimulation of the human polymorphonuclear leukocyte, it was found that the abundant arachidonoyl GPEtn plasmalogen molecular species were uniquely reduced in relative content compared to ether or diacyl species and this subclass of GPEtn may be a source of the arachidonic acid converted to leukotrienes by the 5-lipoxygenase pathway activated in this cell.  相似文献   

19.
We present a comprehensive, sensitive, and highly specific negative ion electrospray LC/MS method for identifying all structural classes of glucosinolates in crude plant extracts. The technique is based on the observation of simultaneous maxima in the abundances of the m/z 96 and 97 ions, generated by programmed cone voltage fragmentation, in the mass chromatogram. The abundance ratios lie in the range 1:2-1:4 ([m/z 96]/[m/z 97]). Examination of the corresponding full-scan mass spectra allows individual glucosinolates of all structural classes to be identified rapidly and with confidence. The use of linearly programmed cone voltage fragmentation enhances characteristic fragment ions without compromising the abundance of the analytically important [M - H]- ion and its associated (and analytically useful) sulfur isotope peaks. Detection limits are in the low nanogram range for full-scan, programmed cone voltage spectra. Comparison of the technique with LC/MS/MS methods (product ion, precursor ion, and constant neutral loss scans) has shown that the sensitivity and selectivity of the programmed cone voltage method is superior. Data obtained on a variety of plant extracts confirmed that the methodology was robust and reliable.  相似文献   

20.
Summary A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号