首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-fixing, field-obtained root nodules of the silky green alder were studied by transmission electron microscopy. The nodule endophyte exhibited a prokaryotic cytology and was present in two forms: the hypha(0.3-1.0mum), which was branched and septate, and the vesicle (3-5mum), which was also septate and developed at the parental hypha tip. Bacteria-like cells, previously observed in light microscopy studies, were not seen in the present work. The actinomycete-like endophyte penetrated through the host cell wall and becane enveloped by a capsular material (0.1mum), the whole being enclosed by host membranes. In some host cells, the endophyte appeared to lyse and become a mass of shrunken debris. The fine structure of the Alnus crispa var. mollis root nodule endophyte was found to be similar to that of other nonleguminous root nodule endophytes.  相似文献   

2.
Nitrogen-fixing root nodules of the Alnus crispa var. mollis Fern. were studied by scanning electron microscopy (SEM). The critical point drying of glutaraldehyde-osmium fixed nodular tissue permitted an excellent morphological preservation of the three-dimensional structures of the host and endophyte cells. The nodule endophyte was observed as two forms: the hypha which can be branched, and the vesicle which developed at the parental hypha tip. The actinomycetal endophyte penetrated through the host cortical cell wall and became enveloped by a membrane. This enclosing membrane is suggested to be the invaginated host plasmalemma. Perforations of the cell wall of the host infected cell were observed. These perforations are suggested to be the result of an enzymatic degradation process, probably regulated by the penetrating endophyte hyphae. In addition to the polymorphic endophyte, endogenous bacterial contaminants were observed in the nodular tissue. The present SEM study confirms previous light microscopy and transmission electron microscopy studies of the same species of root nodule symbiosis.  相似文献   

3.
S. Uemura 《Plant and Soil》1971,35(1):349-360
Summary Among plants native to Japan, nodule formation is confirmed in 14 species and varieties of Alnus, 10 of Elacagnus, 2 of Myrica and 1 of Coriaria, in a number of instances for the first time. Plants of 20 foreign species, in 8 genera, which bear nodules in their native countries, were raised in the nursery in Tokyo; only species of Alnus, Myrica and Ceanothus formed nodules. No nodules were found on native plants ofDryas octopetala var.asiatica. In a trial extending over 12 years evidence was obtained that the growth ofPinus thunbergii was benefited by underplanting withMyrica rubra, a result attributed to nitrogen fixation in the root nodules of the latter species. In the attempted isolation of the endophytes from the nodules of Alnus and other non-legume Angiosperms, although actinomycetes peculiar to the host species were usually obtained from the nodules, none of the isolates induced nodules in re-inoculation tests. Also from Podocarpus nodules actinomycetal and bacterial strains were commonly isolated; re-inoculation tests with these are in progress.  相似文献   

4.
Nitrogen-fixing root nodules of Alnus crispa var. mollis Fern. were studied by transmission electron microscopy and by freeze-etching technique. Ultrathin sectioning of septate vesicles of the actinomycetal endophyte showed an electron transparent zone, the so-called void area, between the vesicle cell wall and its encapsulation material. This void area was not observed in the freeze-etching replicas of cryoprotected nodular tissue. It is suggested that the void area is the result of the coming-off of the vesicle cell wall from the capsule and that its formation reflects difficulty in fixing the voluminous mature vesicle of the root nodule endophyte.  相似文献   

5.
The occurrence and localization of enzymes involved in energy supply and biosynthesis was studied in root nodules of Alnus glutinosa (L.) Vill. Vesicle clusters of the endophyte, Frankia sp., contain NADP-dependent isocitrate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase. The data indicate that both the endophyte and the host are capable of metabolizing carbon compounds via the tricarboxylic acid cycle. Both vesicle clusters of the endophyte and root nodule cells contain glutamate-oxaloacetate transaminase which can function in a malate-aspartate shuttle. This might enable transport of reducing equivalents from the host cell cytoplasm to the endophyte.  相似文献   

6.
The ultrastructure of the root nodule infecting cell of Elaeagnus mollis Diels and its shapes of the endophyte were observed by light microscope, scanning electron microscope and transmission electron microscope. The endophyte in the root nodules of Elaeagnus mollis D. has five different developing forms: hyphae, nitrogen fixing vesicles, sporangia, sporangio-spores and bacteroid-like cells. The roles played by the different forms of the endophytes in symbiotic nitrogen fixation arc discussed also.  相似文献   

7.
1 引言 自1978年由美国的Callaham等首次成功地从香蕨木根瘤中分离出Frankia的离体培养以来,使放线菌结瘤植物的研究领域有了突破性的进展,据报道,近10年国内外的研究者已从10个属植物根瘤中获得Frankia菌株的离体纯培养。我们于1981年由四川  相似文献   

8.
The occurrence and localization of enzymes involved in glycolysis, tricarboxylic acid cycle and glyoxylate cycle in root nodules of Alnus glutinosa (L.) Vill. and Hippophaë rhamnoides L. ssp. rhamnoides were studied. The following enzymes, catalyzing reversible steps in the glycolysis, were found in both the endophyte Frankia spp. and the plant cytosol of Alnus nodules: fructose-1,6-diphosphate aldolase, glyceralde-hyde-3-phosphate dehydrogenase, phosphoglycerate kinase and enolase. The enzymes catalyzing irreversible steps in glycolysis, viz. hexokinase and pyruvate kinase, were detectable only in the plant cytosol. Similar results were obtained with nodule homogenates of Hippophaë. This indicates the absence of a complete glycolysis in the endophyte. Vesicle clusters of the nodule endophyte of Alnus contained various dehydrogenases of the tricarboxylic acid cycle and showed activity of glutamate oxaloacetate transaminase. Respiration studies showed that vesicle clusters take up oxygen when supplied with NAD, glutamate and malate together. No oxygen uptake was found when any of these compounds was omitted. Vesicle clusters from both Alnus and Hippophaë nodules showed no detectable activity of the glyoxylate cycle enzymes isocitrate lyase and malate synthase. Since these enzymes are known to be present in Frankia Avcll, when grown in a medium with Tween 80 as carbon source, it is suggested that the glyoxylate cycle enzymes are repressed in the root-nodule symbioses.  相似文献   

9.
J. H. Becking 《Plant and Soil》1970,32(1-3):611-654
Summary A wide taxonomic range of non-leguminous dicotyledonous plants bear root nodules and are able to fix atmospheric nitrogen. These plants belong to the orders Casuarinales, Myricales, Fagales, Rhamnales, Coriariales, and Rosales. Actinomycetes are involved in the root-nodule symbiosis. Nitrogen fixation is inhibited by hydrogen and carbon monoxide. Combined nitrogen depress nodule formation, but nitrogen fixation still occurs in the presence of combined nitrogen in the medium. In nitrogen-free medium Alnus plants fix in one season of 48 weeks 500 mg N per plant and Ceanothus plants 760 mg N per plant. Fixation by the other plant species is about of the same order. Field estimates showed that the nitrogen increase of the soil was about 61.5–157 kg N per ha per annum, depending on the age of the trees, under Alnus, 58.5 kg N per ha per annum under Casuarina, about 60 kg N per ha per annum under Ceanothus, 27–179 kg N per ha per annum underHippopha? rhamnoides, and about 61.5 kg N per ha per annum underDryas drummondii with someShepherdia spp. Non-leguminous root nodules belong to two types: coralloid root nodules and root nodules where the apex of each nodule lobe produces a negatively geotropic root. The primary infection occurs through the root hairs where a curling effect is observed. In the host cells the endophyte presents itself in three forms: hyphae, vesicles and bacteria-like cells. Vesicles are probably associated with nitrogen fixation, whereas the bacteria-like cells function in the endophyte's survival and dispersal. The endophyte is an obligate symbiont. TheAlnus glutinosa endophyte has been isolated and grownin vitro in root-nodule callus tissue. However, the isolated endophyte produces only ineffective root nodules in re-inoculation tests.  相似文献   

10.
翅果油树根瘤超微结构及其内生菌的观察   总被引:3,自引:0,他引:3  
作者用光学显微镜,透射电镜和扫描电镜对翅果油树(Eldaeagnus mollis D.)根瘤侵染细胞的超微结构及其内生菌的形态进行了观察研究。翅果油树根瘤中的内生菌具有五种不同的发育形态:菌丝、固氮泡囊、孢囊、孢囊孢子和拟类菌体。内生菌的这些不同形态以及它们在共生固氮中的作用,本文也作了讨论。  相似文献   

11.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

12.
Summary Electron microscopy of ultra-thin sections of Hippophaë rhamnoides root nodules has been carried out in order to elucidate the nature of the endophyte. The organism is seen as a branching, septate filament approximately 0.6 microns in diameter bearing on its terminal ends spherical sub-divided vesicles 3–4 microns in diameter. In the mature nodule the vesicles are the most prominent endophyte form and appear to be formed by swelling of the hyphal tips. It is concluded that the endophyte is an actinomycete closely related to but not identical with that of Alnus glutinosa.  相似文献   

13.
非豆科植物的共生固氮作用大多数是由弗兰克氏菌的侵染形成根瘤引起。其中泡囊是弗氏菌在根瘤内的固氮场所(Akkermans等1977,Tjepkema等1981)。我们采用光学及电子显微镜对泡囊进行了观察,并对根瘤不同部位的泡囊数量及其固氮活性与其它生理活性的关系进行了研究。  相似文献   

14.
Reciprocal inoculations with Bradyrhizobium sp. isolates from the North American legume Amphicarpaea bracteata (L.) Fern. (Phaseoleae-Glycininae) and from a Japanese population of its close relative Amphicarpaea edgeworthii (Benth.) var. japonica were performed to analyze relative symbiotic compatibility. Amphicarpaea edgeworthii plants formed few or no nodules with any North American bradyrhizobial strains isolated from A. bracteata, but all A. bracteata lineages formed effective nitrogen-fixing nodules with Japanese Bradyrhizobium isolates from A. edgeworthii. However, one group of A. bracteata plants (lineage Ia) when inoculated with Japanese bradyrhizobia developed a striking leaf chlorosis similar to that known to be caused by rhizobitoxine. The beta-cystathionase inhibition assay demonstrated that significant amounts of rhizobitoxine were present in nodules formed by these Japanese bradyrhizobia. No North American bradyrhizobial isolate from A. bracteata induced chlorosis on any plants, and the beta-cystathionase assay failed to detect rhizobitoxine in nodules formed by these isolates. The role of rhizobitoxine in A. edgeworthii nodulation development was tested by inoculating plants with a Bradyrhizobium elkanii rhizobitoxine-producing strain, USDA 61, and two mutant derivatives, RX17E and RX18E, which are unable to synthesize rhizobitoxine. Amphicarpaea edgeworthii inoculated with wild-type USDA 61 developed >150 nodules per plant, while plants inoculated with RX17E and RX18E developed fewer than 10 nodules per plant. Thus, efficient nodule development in A. edgeworthii appears to be highly dependent on rhizobitoxine production by Bradyrhizobium strains.  相似文献   

15.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

16.
To study the global diversity of plant-symbiotic nitrogen-fixing Frankia strains, a rapid method was used to isolate DNA from these actinomycetes in root nodules. The procedure used involved dissecting the symbiont from nodule lobes; ascorbic acid was used to maintain plant phenolic compounds in the reduced state. Genes for the small-subunit rRNA (16S ribosomal DNA) were amplified by the PCR, and the amplicons were cycle sequenced. Less than 1 mg (fresh weight) of nodule tissue and fewer than 10 vesicle clusters could serve as the starting material for template preparation. Partial sequences were obtained from symbionts residing in nodules from Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. The sequences obtained from Ceonothus griseus and P. tridentata nodules were identical to the sequence previously reported for the endophyte of Dryas drummondii. The sequences from Frankia strains in Coriaria arborea and Coriaria plumosa nodules were identical to one another and indicate a separate lineage for these strains. The Frankia strains in Discaria toumatou nodules yielded a unique sequence that places them in a lineage close to bacteria that infect members of the Elaeagnaceae.  相似文献   

17.
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule.  相似文献   

18.
Diversity of Frankia isolates originating from lobes of single nodules collected on Alnus glutinosa root systems has been analyzed using isozyme electrophoresis method. Analysis of isozyme patterns showed no divergence among strains isolated from the same nodule. Each nodule (among 10 assayed) was inhabited by a single Frankia strain.  相似文献   

19.
The Auxin Content of Root Nodules and Roots of Alnus glutinosa (L.) Vill.   总被引:1,自引:0,他引:1  
In the acid ether-soluble fraction of methanol extracts of rootnodules and roots of Alnus glutinosa (L.) Vill., indol.3yl .aceticacid (IAA) and indol-3yl-carboxylic acid (ICA) were demonstratedspectroflurometrically and the amounts determined quantitatively.Substantially more IAA was detected in nodule tissue than inroots. No seasonal variation in the IAA content, either forthe roots, could be found. ICA was present in measurable amountsonly in the root extracts. Biochromatographic investigations of the extracts revealed IAAto be the main auxin in the nodule tissues. These findings arediscussed with special attention to results of comparable investigationsof auxins in leguminous root nodules and roots.  相似文献   

20.
J. H. Becking 《Plant and Soil》1984,78(1-2):105-128
Summary Root nodules ofDryas drummondii are of the coralloid type (Alnus type). The endophyte is present in the middle cortical cells of the root-nodule tissue. Transmission electron micrographs revealed an actinorhizal endophyte with septate hyphae and non-septate spherical or ovoid vesicles. Vesicles always possess at the base a septum; septa formation in the endophyte is always associated with the presence of mesosomes. Branching of the endophyte is not necessarily correlated with septum formation. Hyphal structures are more prominent in the apical part of the root nodule and vesicles are more numerous in a broad zone below this. In the middle and towards the base of the root nodule the endophytic structures appear in a stage of disintegration. Vesicles appear in a broad region near the periphery of the host cell and regularly show no strict orientation towards the host-cell wall. In the center of the host cells only hyphae occur. In the intercellular spaces between the host cells theFrankia endophyte produces spore-like structures although the outline of the sporangia is often faint.The coralloid root ofRubus ellipticus shows characteristically a basal rootlet initiated below the dichotomous branching of the nodular lobes, but extending beyond the root nodule. The endophyte is only present in the outer cortex of the root nodule in a 1–2 cell wide layer. This endophytic layer is bounded, internally as well as externally, with a 4–5 cell wide layer of tannin-filled host cells. The implications of this situation are discussed. Tannin-filled cells occur regularly inRubus species and their arrangement has been used for taxonomic purposes within the genus. TheRubus endophyte is aFrankia species with septate hyphae and distinctly septate spherical vesicles. The ultrastructure of the vesicles of theRubus endophyte is very similar to that of theAlnus endophyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号