首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract.  相似文献   

2.
Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed by scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion-promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonella typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains.  相似文献   

3.
Aims:  To evaluate the adhesion ability of intestinal bacteria to different in vitro models of intestinal epithelia, and to estimate the suitability of these models and the type of interactions involved.
Methods and results:  The adhesion of probiotic ( Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp . lactis Bb12), commensal ( B. animalis IATA-A2 and B. bifidum IATA-ES2) and potentially pathogenic bacteria ( E. coli and L. monocytogenes ) was determined. The adhesion models used were polycarbonate-well plates, with or without mucin, and different configurations of Caco-2 and/or HT29-MTX cell cultures. All bacteria adhered to wells without mucin (2·6–27·3%), the values being highly variable depending on the bacterial strain. Adhesion percentages of potentially probiotic bacteria to Caco-2 cultures were remarkably lower ( P  <   0·05) than those to mucin, and more similar to those of pathogenic strains. The lowest adhesion of different bacterial strains was detected on HT29-MTX (0·5–2·3%) cultures and Caco-2/HT29-MTX (0·6–3·2%) cocultures, while these values were increased in Caco-2 cultures plus mucin.
Conclusions:  The results suggested that bacterial strains exhibit different capacities to adhere to cellular components and several types of mucin present in different models, showing preferences for intestinal MUC2.
Significance and impact of the study:  The use of Caco-2 cells monolayer plus mucin (type II) better approaches the physiological characteristics of in vivo situation, providing a reliable and suitable in vitro model to evaluate bacterial adhesion.  相似文献   

4.
Cocultures of two human cell lines, Caco-2 and HT29-MTX mucus-producing cells, have been incorporated into an in vitro digestion/cell culture model used to predict iron bioavailability. A range of different foods were subjected to in vitro digestion, and iron bioavailability from digests was assessed with Caco-2, Caco-2 overlaid with porcine mucin, HT29-MTX or cocultures of Caco-2 and HT29-MTX at varying ratios. It was found that increasing the ratio of HT29-MTX cells decreased the amount of ferritin formed and resulted in an overall decline in the ability of the model to detect differences in iron bioavailability. At the physiologically relevant ratios of 90% Caco-2/10% HT29-MTX and 75% Caco-2/25% HT29-MTX, however, a mucus layer completely covered the cell monolayer and the in vitro digestion model was nearly as responsive to changes in sample iron bioavailability as pure Caco-2 cultures. The in vitro digestion/Caco-2 cell culture model correlates well with human iron bioavailability studies, but, as mucus appears to play a role in iron absorption, the addition of a physiologically realistic mucus layer and goblet-type cells to this model may give more accurate iron bioavailability predictions.  相似文献   

5.
The mechanism of adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium was investigated. Adhesion inhibition tests involving chelators, monosaccharides, periodate and concanavalin A and the use of bacteria grown in the presence of tunicamycin failed to clarify the adhesive mechanism. Washed bacterial cells had reduced adhesive capacity, except in the presence of spent broth culture supernatant fraction or cell washings. Spent culture supernatant fractions of erythrosine-supplemented broth did not enhance adhesion of washed cells. The adhesion-promoting factor(s) in the spent broth culture supernatant fractions and cell washings bound to both bacterial and epithelial cell surfaces, but did not promote adhesion of two other Lactobacillus strains which were not of mouse origin, thereby indicating host specificity for the adhesion-promoting activity. Chemical characteristics of the adhesion-promoting factor were determined by pretreatment of the dialysis retentate of spent broth culture supernatant fractions with proteolytic enzymes, concanavalin A-Sepharose or periodate before the adhesion assay. The adhesin was non-dialysable, pronase-sensitive, heat sensitive at 100 degrees C, had no affinity for concanavalin A-Sepharose and contained no carbohydrate groups active in the adhesion process. The protein profiles of dialysis retentates of spent broth culture supernatant fractions after bacterial growth in the absence and presence of erythrosine were determined by 2-dimensional SDS-PAGE. Gel filtration by HPLC was used for purification of an adhesion-promoting fraction. The host-specific adhesion of L. fermentum strain 737 was mediated by a protein, with an Mr of 12-13000, that was not detectable in cells grown in the presence of erythrosine. A model for the mode of binding of the adhesin to host epithelia and bacterial surfaces is proposed.  相似文献   

6.
Factors involved in adherence of lactobacilli to human Caco-2 cells.   总被引:30,自引:11,他引:19       下载免费PDF全文
A quantitative assay performed with bacterial cells labelled with [3H]thymidine was used to investigate factors involved in the adherence of human isolates Lactobacillus acidophilus BG2FO4 and NCFM/N2 and Lactobacillus gasseri ADH to human Caco-2 intestinal cells. For all three strains, adherence was concentration dependent, greater at acidic pH values, and significantly greater than adherence of a control dairy isolate, Lactobacillus delbrueckii subsp. bulgaricus 1489. Adherence of L. acidophilus BG2FO4 and NCFM/N2 was decreased by protease treatment of the bacterial cells, whereas adherence of L. gasseri ADH either was not affected or was enhanced by protease treatment. Putative surface layer proteins were identified on L. acidophilus BG2FO4 and NCFM/N2 cells but were not involved in adherence. Periodate oxidation of bacterial cell surface carbohydrates significantly reduced adherence of L. gasseri ADH, moderately reduced adherence of L. acidophilus BG2FO4, and had no effect on adherence of L. acidophilus NCFM/N2. These results indicate that Lactobacillus species adhere to human intestinal cells via mechanisms which involve different combinations of carbohydrate and protein factors on the bacterial cell surface. The involvement of a secreted bridging protein, which has been proposed as the primary mediator of adherence of L. acidophilus BG2FO4 in spent culture supernatant (M.-H. Coconnier, T. R. Klaenhammer, S. Kernéis, M.-F. Bernet, and A. L. Servin, Appl. Environ. Microbiol. 58:2034-2039, 1992), was not confirmed in this study. Rather, a pH effect on Caco-2 cells contributed significantly to the adherence of this strain in spent culture supernatant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Human intestinal cell models are widely used to study host-enteric pathogen interactions, with different cell lines exhibiting specific characteristics and functions in the gut epithelium. In particular, the presence of mucus may play an important role in adhesion and invasion of pathogens. The aim of this study was to evaluate the suitability of the mucus-secreting HT29-MTX intestinal epithelial cell model to test adhesion and invasion of Salmonella strains and compare with data obtained with the more commonly used Caco-2 and HT-29 models. Adhesion of Salmonella to HT29-MTX cell model was significantly higher, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface, compared to the non- and low-mucus producing Caco-2 and HT-29 cell models, respectively. In addition, invasion percentages of some clinical Salmonella strains to HT29-MTX cultures were remarkably higher than to Caco-2 and HT-29 cells suggesting that these Salmonellae have subverted the mucus to enhance pathogenicity. The transepithelial electrical resistances of the infected HT29-MTX cell model decreased broadly and were highly correlated with invasion ability of the strain. Staining of S. Typhimurium-infected cell epithelium confirmed the higher invasion by Salmonella and subsequent disruption of tight junctions of HT29-MTX cell model compared with the Caco-2 and HT-29 cell models. Data from this study suggest that the HT29-MTX cell model, with more physiologically relevant characteristics with the mucus layer formation, could be better suited for studying cells–pathogens interactions.  相似文献   

8.
The establishment of the intestinal microflora, and probiotic bacteria, may control the inflammatory conditions in the gut. As polyunsaturated fatty acids (PUFA) possess antimicrobial activities, they may deter the action of probiotics. We assessed whether free linoleic, gamma-linolenic, arachidonic, alpha-linolenic and docosahexaenoic acids at physiological concentrations in the growth media would influence the growth and adhesion of Lactobacillus GG (probiotic), Lactobacillus casei Shirota (probiotic) and Lactobacillus bulgaricus (dairy strain). Higher concentrations of PUFA (10-40 microg PUFA ml(-1)) inhibited growth and mucus adhesion of all tested bacterial strains, whilst growth and mucus adhesion of L. casei Shirota was promoted by low concentrations of gamma-linolenic acid and arachidonic acid (at 5 microg ml(-1)), respectively. PUFA also altered bacterial adhesion sites on Caco-2 cells. Caco-2 cells grown in the presence of arachidonic acid were less adhered to by all three bacterial strains. Yet, L. casei Shirota adhered better on Caco-2 cells grown in the presence of alpha-linolenic acid. As the adhesion to mucosal surfaces is pivotal in health promoting effects by probiotics, our results indicate that the action of probiotics in the gut may be modulated by dietary PUFA.  相似文献   

9.
To describe the phenomena of bacterial adhesion to intestinal cells and the competition for adhesion between bacteria, mathematical equations based on a simple dissociation process involving a finite number of bacterial receptors on intestinal cell surface were developed. The equations allow the estimation of the maximum number of Lactobacillus sp. and Escherichia coli cells that can adhere to Caco-2 cells and intestinal mucus; they also characterize the affinity of the bacteria to Caco-2 cells and intestinal and fecal mucus and the theoretical adhesion ratio of two bacteria present in a mixed suspension. The competition for adhesion between Lactobacillus rhamnosus GG and E. coli TG1 appeared to follow the proposed kinetics, whereas the competition between Lactobacillus casei Shirota and E. coli TG1 may involve multiple adhesion sites or a soluble factor in the culture medium of the former. The displacement of the adhered Lactobacillus by E. coli TG1 seemed to be a rapid process, whereas the displacement of E. coli TG1 by the Lactobacillus took more than an hour.  相似文献   

10.
The degree of adhesion of Lactobacillus casei strain GG to human Caco-2 cell line was investigated. Assessment of adhesion was compared to the adhesion of enterotoxigenic human Escherichia coli strain H 10407 and enterotoxigenic bovine E. coli strain B44 (non-adhesive). Freeze-dried Lactobacillus GG or samples from dairy products had medium to strong binding to the Caco-2 cell line. Lactobacillus acidophilus (NCFB 1748) and L. bulgaricus showed no adhesion to the cell line while four tested Bifidobacterium strains had no or very weak adhesion to the Caco-2 cell line.  相似文献   

11.
Experiments reported in this communication showed that the highly toxinogenic Cd 79685, Cd 4784, and Wilkins Clostridium difficile strains and the moderately toxinogenic FD strain grown in the presence of blood adhere to polarized monolayers of two cultured human intestinal cell lines: the human colonic epithelial Caco-2 cells and the human mucus-secreting HT29-MTX cells. Scanning electron microscopy revealed that the bacteria interacted with well-defined apical microvilli of differentiated Caco-2 cells and that the bacteria strongly bind to the mucus layer that entirely covers the surface of the HT29-MTX cells. The binding of C. difficile to Caco-2 cells developed in parallel with the differentiation features of the Caco-2 cells, suggesting that the protein(s) which constitute C. difficile-binding sites are differentiation-related brush border protein(s). To better define this interaction, we tentatively characterized the mechanism(s) of adhesion of C. difficile with adherence assays. It was shown that heating of C. difficile grown in the presence of blood enhanced the bacterial interaction with the brush border of the enterocyte-like Caco-2 cells and the human mucus-secreting HT29-MTX cells. A labile surface-associated component was involved in C. difficile adhesion since washes of C. difficile grown in the presence of blood without heat shock decreased adhesion. After heating, washes of C. difficile grown in the presence of blood did not modify adhesion. Analysis of surface-associated proteins of C. difficile subjected to different culture conditions was con-ducted. After growth of C. difficile Cd 79685, Cd 4784, FD and Wilkins strains in the presence of blood and heating, two predominant SDS-extractable proteins with molecular masses of 12 and 27 kDa were observed and two other proteins with masses of 48 and 31 kDa disappeared. Direct involvement of the 12 and 27 kDa surface-associated proteins in the adhe-sion of C. difficile strains was demonstrated by using rat polycolonal antibodies pAb 12 and pAb 27 directed against the 12 and 27kDa proteins. Indeed, adhesion to Caco-2 cell monoiayers of C. difficiie strains grown in the presence of blood, without or with heat-shock, was blocked. Taken together, our results suggest that C. difficiie may utilize blood components as adhesins to adhere to human intestinal cultured cells.  相似文献   

12.
The influence of pH on the adhesion of two Lactobacillus strains to Caco-2 human intestinal cells was investigated. One strain, Lactobacillus johnsonii La1, was adherent at any pH between 4 and 7. The other one, L. acidophilus La10, did not attach to this cell line under the same experimental conditions. On the basis of these results, we used the monoclonal antibody technique as a tool to determine differences on the surface of these bacteria and to identify a factor for adhesion. Mice were immunized with live La1, and the hybridomas produced by fusion of spleen cells with ONS1 cells were screened for the production of antibodies specific for L. johnsonii La1. A set of these monoclonal antibodies was directed against a nonproteinaceous component of the L. johnsonii La1 surface. It was identified as lipoteichoic acid (LTA). This molecule was isolated, chemically characterized, and tested in adhesion experiments in the same system. The adhesion of L. johnsonii La1 to Caco-2 cells was inhibited in a concentration-dependent way by purified LTA as well as by L. johnsonii La1 culture supernatant that contained LTA. These results showed that the mechanism of adhesion of L. johnsonii La1 to human Caco-2 cells involves LTA.  相似文献   

13.
The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectin-coated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29-MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6?mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.  相似文献   

14.
Abstract Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors.  相似文献   

15.
16.
In the presence of Lactobacillus casei NY1301, the adhesion of Lactobacillus gasseri NY0509 to cultured human intestinal Caco-2 cells was significantly increased (P<0.01). In contrast, L. gasseri NY0509 did not affect the adhesion of L. casei NY1301. A heat-stable cell component of L. casei NY1301 was involved in this increase of adhesion. These results suggest that a combination of these strains may have synergistic effects of adhesion to human intestinal mucosa.  相似文献   

17.
In the presence of Lactobacillus casei NY1301, the adhesion of Lactobacillus gasseri NY0509 to cultured human intestinal Caco-2 cells was significantly increased (P<0.01). In contrast, L. gasseri NY0509 did not affect the adhesion of L. casei NY1301. A heat-stable cell component of L. casei NY1301 was involved in this increase of adhesion. These results suggest that a combination of these strains may have synergistic effects of adhesion to human intestinal mucosa.  相似文献   

18.
The human intestinal epithelium is composed of several cell types, mainly enterocytes and goblet (mucin-secreting) cells. This study compares the cellular response of Fe transporters in Caco-2, HT29-MTX, and Caco-2/HT29-MTX co-culture models for Fe bioavailability. Caco-2 cells in vitro differentiate into enterocyte-like cells and HT29-MTX cell lineage into a mucin-secreting cellular population. Cell cultures were exposed to digests of Fe+3, Fe+3/ascorbic acid, cooked fish (high-available Fe) or white beans (low-available Fe). Cell responses as shown by mRNA expression of the main Fe transporters, DMT1 and DcytB, and cell ferritin formation were monitored. In Caco-2/HT29-MTX co-cultures, the mucin layer lowered the pool of free Fe to diffuse towards the cell brush border membrane of enterocytes, which was accompanied of an upregulation of DMT1 mRNA expression. In contrast, cultures exposed to digests of fish or white beans showed no significant differences in the regulation of Fe transporters.  相似文献   

19.
Lin CK  Tsai HC  Lin PP  Tsen HY  Tsai CC 《Anaerobe》2008,14(5):251-255
The mechanisms for lactic acid bacteria (LAB) to inhibit Salmonella invasion appear to be multifactorial and include the adhesion of LAB to host intestine epithelium, the production of organic acids, or bacteriocin by LAB cells. Previously, we found a strain of Lactobacillus acidophilus isolated from swine, i.e. strain LAP5, was with antagonistic effect against Salmonella typhimurium. This strain LAP5 was also found to meet the requirements for probiotic use. In this study, we evaluate the potential of LAP5 strain to protect the human or swine from infection by Salmonella choleraesuis. We present evidence that the culture of LAP5 was able to inhibit the invasion of S. choleraesuis to human Caco-2 cell line. The LAP5 cell culture showed a higher inhibitory effect on the invasion of S. choleraesuis to Caco-2 cells than the spent culture supernatant (SCS) of LAP5 did. Also, the pH, organic acids or the bacteriocin, which act at low pH conditions, may play the role of antagonistic effect. The addition, adhesion of LAP5 cells to Caco-2 cell line may also play roles to reduce the invasion of S. choleraesuis.  相似文献   

20.
AIMS: The objective of this study was to assess in vitro, whether heat-killed (HK) lactic acid bacteria cells and fractionations of HK cells could suppress the viability of human cancer cells and inhibit the cytotoxicity associated with oxidative stress. METHODS AND RESULTS: Among the strains, the HK cells of Lactobacillus acidophilus 606 and Lactobacillus casei ATCC 393 exhibited the most profound inhibitory activity in all of the tested cell lines. HK cells of L. acidophilus 606 were determined to be less toxic to healthy human embryo fibroblasts (hEF cells) than were HK cells of L. casei ATCC 393. The soluble polysaccharides from L. acidophilus 606 evidenced the most effective anticancer activity, but inhibited hEF cell growth by only 20%. The soluble polysaccharides from L. acidophilus 606 were partly observed to induce apoptosis in the HT-29 cells by DNA fragmentation and propidium iodine staining. Both the HK cells of L. acidophilus 606 and the soluble polysaccharide components of this strain also exhibited potent antioxidative activity. CONCLUSIONS: Our findings suggest that the soluble polysaccharide fraction from L. acidophilus 606 may constitute a novel anticancer agent, which manifests a high degree of selectivity for human cancer cells and antioxidative agent in the food industry. SIGNIFICANCE AND IMPACT OF THE STUDY: These soluble polysaccharide components from Lactobacillus may be applied to various foods, and used as adjuncts for cancer therapy and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号