首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peritoneal cells (PC) in C57B1/6 (B6, H-2b) mice receiving an intraperitoneal (i.p.) injection of allogeneic BALB/c (H-2d) spleen cells demonstrated potent cytotoxic activity against syngeneic, xenogeneic, third-party allogeneic tumors as well as H-2d derived tumors. Maximum cytotoxic activity against various tumors other than H-2d derived tumor, B16 (H-2b) was elicited on day 3 post allosensitization and decreased drastically thereafter, whereas cytotoxic activity against P815 (H-2d) peaked 3 days after the inoculation and maintained the peak activity thereafter. Surface phenotype of PC responsible for the cytotoxic activity against B16 was Thy-1+/-, Lyt-2-, L3T4-, asialo GM1 (AGM1)+, and that of PC against P815 was Thy-1+, Lyt-2+ (or Lyt-2+/-), L3T4-, AGM1+. These phenotypes showed similar phenotypes to the counterparts against B16 and against P815 in spleen cells induced by intravenous inoculation of alloantigen. When mice were pretreated i.p. with anti-AGM1 antibody before the allosensitization, anti-P815 cytotoxic-activity in PC was completely diminished. Similar activity in spleen, however, was enhanced by i.v. treatment with the antibody before the i.v. inoculation of alloantigen. The data clearly demonstrate that in vivo inoculation of B6 mice with normal allogeneic cells induces "NK-like" CD8- cytotoxic cells and "anomalous" CD8+ cytotoxic cells in PC.  相似文献   

2.
Aged C57BL/6 (B6) mice could reject allogeneic BALB/c RL male 1 tumor as efficiently as young B6 mice. However, in vitro analysis showed impaired generation of cytotoxic T cell response in aged B6 mice against allogeneic tumor. The reaction could be augmented by the addition of recombinant interleukin-2 (rIL-2). Enzyme-linked immunospots (ELISPOT) produced by CD8+ T cells purified from spleen cells showed no reduction in aged mice. The findings suggested that the number of CD8+ T cells capable of reacting against allogeneic H-2 antigens was similar in young and aged B6 mice. Low cytotoxic T lymphocyte (CTL) responsiveness in aged B6 mice appeared to have resulted from low responsiveness of CD4+ T cells producing IL-2. Although CTL generation was apparently impaired, strong multiple antigenicity of allogeneic tumor evoked a rejection response in aged B6 mice. On the other hand, no rejection response was observed against syngeneic EL4 tumor in aged B6 mice even after depletion of CD4+ CD25+ immunoregulatory cells. Depletion of CD4+ CD25+ cells caused rejection of EL4 tumor in young B6 mice. The findings suggested that aged B6 mice were incapable of inducing effector cells against weak tumor antigens. Only marginal CTL response and small number of ELISPOTs were generated in young but not aged B6 mice against EL4. Addition of rIL-2 to the culture augmented EL4 killing and ELISPOTs in spleen cells from young and aged B6 mice.  相似文献   

3.
Summary Normal C57BL/6 (B6) spleen cells were cultured with syngeneic EL4 tumour cells, expanded in IL2-containing medium, and tested for anti-tumour activity in vitro and in vivo. The activated cells were highly cytotoxic for EL4 and to a lesser degree killed syngeneic B6 blasts and allogeneic (D2) P815 tumour cells. B6 or BDF1 mice that received these cultured cells by IP injection cleared 125IUdR-labelled EL4 cells faster than untreated mice. However, this enhanced clearance was evident only 7–12 days after injection. Since the injected cells had a short half-life (<10% remaining after 48 h) the effect of these cells in vivo was most probably due to the activation of the host's immune system. Mice that received cultured cells survived significantly longer than untreated mice following a lethal dose of EL4 cells. Cultured cells were much more effective in prolonging survival when used in conjunction with cyclophosphamide (CY). In animals receiving either cultured cells with or without CY or CY alone tumour clearance was markedly enhanced 7–12 days after injection.When challenged with a small dose of EL4 tumour cells (1×104 SC per mouse) three of ten B6 mice treated with B6 anti-EL4 cultured cells were able to survive indefinitely. The frequency of CTL precursors to EL4 from the spleen cells of these surviving animals was about five-fold higher than that of normal spleen cells. Furthermore, CTL derived from primed spleen cells were more specific for EL4 than those derived from normal spleen cells.Abbreviations B6 C57BL/6J - BDF1 (C57BL/6J×DBA/2J) F1 - ConA SN concanavalin A supernatant - CTL cytotoxic T lymphocytes - CTL-P cytotoxic T-lymphocyte precursors - CY cyclophosphamide - E/T effector-to-target ratio - IL2 interleukin 2 - IP intraperitoneal - IUdR iododeoxyuridine - IV intravenous - LPS lipopolysaccharide - MST mean survival time  相似文献   

4.
The cytotoxic response of splenic Lyt-2+ T cells to class I H-2 alloantigen-bearing stimulator cells was analyzed under limiting dilution conditions. One of 50 to one of 200 nylon wool-nonadherent (FACS-purified), small Lyt-2+ spleen cells of B6 origin gave rise in vitro to a cytotoxic T lymphocyte clone that specifically lysed targets bearing bm1 alloantigen. This population of alloantigen-specific cytotoxic lymphocyte precursors (CLP) was activated by different types of bm1 stimulator cells with different efficiency: 2 X 10(5) nonfractionated spleen cells, 5000 normal peritoneal cells, 400 to 10(4) L3T4+ helper T blasts, or 2000 to 10(4) Lyt-2+ T blasts induced clonal growth of this CLP pool. Irradiated or mitomycin-treated small (L3T4+ or Lyt-2+) bm1-derived T cells were inefficient stimulator cells for this response. Supplementation of culture medium with (recombinant) interleukin 2 was necessary and sufficient to support clonal development of alloantigen-triggered CLP in the presence of allogeneic T blasts. Under these limiting dilution conditions, we observed comparable cloning efficiencies for (wild-type) Kb-allospecific splenic Lyt-2+ CLP from bm1 mice generated in response to either irradiated B6 spleen cells or inactivated B6-derived T cell lines (EL4 and RBL-5 lymphoma cells). The data indicate that normal T lymphoblasts as well as tumor T cell lines stimulate clonal development in vitro of class I H-2-allospecific cytotoxic T lymphocytes in the presence of interleukin 2.  相似文献   

5.
Intracameral inoculation of allogeneic B16F10 melanoma cells (C57BL/6) into LP/J mice resulted in progressively growing intraocular tumors and impaired delayed-type hypersensitivity (DTH) reactivity. Additional experiments showed that DTH responses were specifically down-regulated by splenic T suppressor cells. By contrast, subcutaneous inoculation of B16F10 melanoma cells induced significant DTH responses to the alloantigens expressed on the tumor cells and stimulated brisk rejection of the subcutaneously injected tumor cells. In spite of the T suppressor cell inhibition of DTH reactivity, significant cytotoxic T lymphocyte activity could be demonstrated in lymphoid cell suspensions from hosts harboring allogeneic intraocular tumors. The demonstrated cytotoxic T lymphocyte activity is particularly noteworthy because it occurs in the face of severely suppressed DTH responsiveness and thus implies that the intracameral presentation of alloantigens evokes a precise immunoregulatory process that selectively and concomitantly modulates specific cellular immune components; one immune process (cytotoxic T lymphocyte function) is stimulated whereas the other (DTH responsiveness) is down-regulated.  相似文献   

6.
Delayed-type hypersensitivity (DTH) responses against methylcholanthrene-induced fibrosarcomas in C3H/He and BDF1 mice were developed in BDF1 mice by sc injection of the respective mitomycin C-treated tumor cells. The DTH responses to the allogeneic and the syngeneic tumor cells were accelerated and enhanced tumor-specifically by priming 7 days previously with KCl extracts of the respective tumors. The ability in the mice primed with the tumor extracts enhancing the DTH response against the tumor cells could be transferred to recipient mice by the spleen cells, but not by the T-cell-depleted spleen cells. Rejection of allogeneic tumor was accelerated under the development of accelerated and enhanced DTH response against the allogeneic tumor antigens. Moreover, resistance to syngeneic tumor growth increased significantly with the development of accelerated and enhanced DTH response against the syngeneic tumor antigens. Thus, the augmentation of DTH response by preimmunization with tumor extracts was accompanied by the increased resistance to tumor growth, suggesting that T cells involved in the augmentation of tumor-specific DTH response play some role in increasing the resistance to tumor growth.  相似文献   

7.
After C57BL/6 (B6) mice were inoculated with BALB/c spleen cells via tail vein, kinetics of cytotoxic activities in the B6 mice against sensitizing alloantigens (H-2d) and against syngeneic antigens were investigated using, as target cells, P815 mastocytoma cells (H-2d) and B16 melanoma cells (H-2b). Cytotoxic activity against P815 in the B6 spleen cells reached a peak 3 days after alloantigen inoculation, decreased drastically on day 5 and rose again thereafter. The profile of anti-B16 cytotoxic activity was similar to that of anti-P815 activity. The cytotoxic activity against P815 was inhibited partially by cold B16, but that against B16 was not inhibited by cold P815. Surface phenotype of cytotoxic cells against P815 was Lyt2+, Thy1+, Asialo GM1+ and that of cytotoxic cells against B16 was Lyt2-, Thy1+/-, and Asialo GM1+. The results indicate that inoculation of B6 mice with allogeneic BALB/c spleen cells induce two types of cytotoxic cells; one is similar to lymphokine-activated killer (LAK) cells and the other is activated natural killer cells.  相似文献   

8.
Cytotoxic responses of UV-irradiated mice against syngeneic UV-induced tumors were measured by using a 51Cr-release assay to determine if UV treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the "memory" response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of UV-treated mice against syngeneic, UV-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic UV-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, UV-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses.  相似文献   

9.
In the absence of specific antigen stimulation, nonspecific killer cells were induced by culturing C57BL/6 lymph node or spleen cells with interleukin 2-containing supernatants. These supernatants were obtained from stimulation of either rat spleen cells with concanavalin A or a variant of the T cell lymphoma, EL4 (H-2b) with phorbol myristic acetate. The ability of the EL4 supernatant to induce nonspecific killer cells was abrogated by absorption with an interleukin 2-dependent T cell line or by concanavalin A-stimulated spleen cell blasts, but not by lipopolysaccharide-stimulated spleen cell blasts or by a non-interleukin 2-producing EL4 line. Partially purified interleukin 2 from EL4 supernatants could also support nonspecific killer cell induction. The induction of cytolytic cells by interleukin 2 is sensitive to gamma-irradiation and has a D omicron of 120 rad. The nonspecific killer cells induced are likely cytotoxic T lymphocytes; the majority of the precursor and effector cells bear the Thy-1 alloantigen marker. These nonspecific killer cells killed a broad spectrum of target cells, including concanavalin A- and lipopolysaccharide-induced splenic blasts of syngeneic or allogeneic mice, a syngeneic tumor, and a cloned allogeneic cytotoxic T cell line. The frequency of precursors for nonspecific killer cells in C57BL/6 lymph node and spleen cells are 1/7000 and 1/12,000, respectively. Clonal analyses revealed that these nonspecific killers exhibit heterogeneity with respect to their target cell specificities. The induction of nonspecific killers by interleukin 2-containing supernatants is partially dependent on nylon wool-adherent cells; in antigen-stimulated cultures the most specific killer cells were obtained from cultures in which nylon wool-nonadherent lymph node responder cells were stimulated with nylon wool-nonadherent allogeneic splenic stimulator cells that were treated with anti-Thy-1 antibody and complement. The relevance of these findings with respect to the frequencies and fine specificities of cytotoxic T lymphocytes generated in interleukin 2-supplemented cultures is discussed.  相似文献   

10.
In the present study we demonstrate the ability of allogeneic M3 tumor cells to induce an antitumor response against the syngeneic tumor, when injected locally together with syngeneic B16 melanoma cells. The replacement of the allogeneic tumor cells with either syngeneic or allogeneic splenocytes had no effect on the growth of the syngeneic tumor. Systemic administration of both interleukin-2 (IL-2) and IL-6 did not affect the antitumor response induced by allogeneic tumor cells. When mice, previously injected with B16 and M3 cells, were rechallenged subcutaneously with B16 tumor cells at a different anatomical site, an inhibitory effect in some, but not all, experiments was observed. Systemic injections of either IL-2 or IL-6 did not alter the antitumor effects of the allogeneic and syngeneic tumor-cell mixtures. The significance of our results in developing immunotherapy modalities based on active immunization with allogeneic tumor cells and selected cytokines is discussed.This study was supported by a grant from the Israeli Cancer Association  相似文献   

11.
Tumor-infiltrating dendritic cells are often ineffective at presenting tumor-derived antigen in vivo, a defect usually ascribed to the suppressive tumor environment. We investigated the effects of depleting CD4+CD25+ “natural” regulatory T cells (Treg) on the frequency, phenotype and function of total dendritic cell populations in B16.OVA tumors and in tumor-draining lymph nodes. Intraperitoneal injection of the anti-CD25 monoclonal antibody PC61 reduced Treg frequency in blood and tumors, but did not affect the frequency of tumor-infiltrating dendritic cells, or their expression of CD40, CD86 and MHCII. Tumor-infiltrating dendritic cells from PC61-treated or untreated mice induced the proliferation of allogeneic T cells in vitro, but could not induce proliferation of OVA-specific OTI and OTII T cells unless specific peptide antigen was added in culture. Some proliferation of naïve, OVA-specific OTI T cells, but not OTII T cells, was observed in the tumor-draining LN of mice carrying B16.OVA tumors, however, this was not improved by PC61 treatment. Experiments using RAG1−/− hosts adoptively transferred with OTI and CD25-depleted OTII cells also failed to show improved OTI and OTII T cell proliferation in vivo compared to C57BL/6 hosts. We conclude that the defective presentation of B16.OVA tumor antigen by tumor-infiltrating dendritic cells and in the tumor-draining lymph node is not due to the presence of “natural” CD4+CD25+ Treg.  相似文献   

12.
Due to the pivotal role that dendritic cells (DC) play in eliciting and maintaining functional anti-tumor T cell responses, these APC have been exploited against tumors. DC express several receptors for the Fc portion of IgG (Fcγ receptors) that mediate the internalization of antigen-IgG complexes and promote efficient MHC class I and II restricted antigen presentation. In this study, the efficacy of vaccination with DC pulsed with apoptotic B16 melanoma cells opsonized with an anti-CD44 IgG (B16-CD44) was explored. Immature bone marrow derived DC grown in vitro with IL-4 and GM-CSF were pulsed with B16-CD44. After 48 h of pulsing, maturation of DC was demonstrated by production of IL-12 and upregulation of CD80 and CD40 expression. To test the efficacy of vaccination with DC+B16-CD44, mice were vaccinated subcutaneously Lymphocytes from mice vaccinated with DC+B16-CD44 produced IFN-γ in response to B16 melanoma lysates as well as an MHC class I restricted B16 melanoma-associated peptide, indicating B16 specific CD8 T cell activation. Upon challenge with viable B16 cells, all mice vaccinated with DC alone developed tumor compared to 40% of mice vaccinated with DC+B16-CD44; 60% of the latter mice remained tumor free for at least 8 months. In addition, established lung tumors and distant metastases were significantly reduced in mice treated with DC+B16-CD44. Lastly, delayed growth of established subcutaneous tumors was induced by combination therapy with anti-CD44 antibodies followed by DC injection. This study demonstrates the efficacy of targeting tumor antigens to DC via Fcγ receptors.  相似文献   

13.
The present study investigates some of the immunogenetic bases for tolerance of anti-allo-delayed type hypersensitivity (DTH) responses as induced by pre-inoculating allogeneic cells via portal venous (p.v.) route. BALB/c mice were injected with totally allogeneic C57BL/6 or H-2 incompatible BALB.B spleen cells via p.v. route. These mice not only failed to exhibit anti-H-2b DTH responses, but also abrogated the potential to generate H-2b-specific DTH responses as induced by the subsequent immunization with H-2b spleen cells via subcutaneous (s.c.) route. The p.v. presensitization with allogeneic spleen cells differing at either class I or class II of major histocompatibility complex (MHC) resulted in the tolerance induction of DTH responses to the respective allogeneic class I or class II MHC antigens. Moreover, the p.v. administration of the class I-positive allogeneic cell fraction depleted of class II-positive component into recipients differing at both class I and class II was capable of inducing anti-class I DTH tolerance. These results indicate that anti-allo-class I or class II DTH tolerance can be induced independently and that the existence of class II antigens on p.v.-presensitized cells is not necessarily required for the tolerance induction of anti-allo-class I DTH response.  相似文献   

14.
Summary This paper extends our previous studies, which documented our ability to isolate immunogenic entities from nonimmunogenic or weakly immunogenic tumors.B16 melanoma cells failed, in our in vitro experimental system, to induce anti-B16 cytotoxic responses in spleen cells derived from normal syngeneic C57BL/6 mice. The B16 melanoma cellular homogenate was fractionated on an Ultrogel AcA 34 column, and the various fractions were tested for their ability to induce anti-B16 cytotoxic responses under the same conditions as those used for intact B16, the nonimmungenic tumor cells. Certain fractions, some of them with relatively low protein concentrations, induced anti-B16 cytotoxic responses in spleen cells of normal C57BL/6 mice, whereas others, some of them with relatively high protein concentrations, failed to induce such responses. One fraction (Fr.), designated Fr. 5/6, was examined in detail. It was found that in normal syngeneic spleen cells this fraction induced effector cells that efficiently killed (at various E : T ratios) the relevant B16 target cells and RBL5 syngeneic tumor cells, but not the YAC allogeneic tumor cells or C57BL/6 lymphoblasts. Furthermore, an excess of unlabeled B16 cells most efficiently blocked the ability of these anti-B16 effector cells to kill radiolabeled B16 target cells. RBL5 tumor cells, YAC tumor cells, or C57BL/6 lymphoblasts failed to block these effector cells efficiently. A significant fraction of the effector cells induced with Fr. 5/6 was characterized as thymus-derived cells (Thy-1+, Thy-2+3+ cells). It was suggested that another fraction of the cellular population was natural killer cells, which cytolyzed the RBL5 target cells. Various theoretical and practical aspects of these findings are discussed.  相似文献   

15.
Spleen cells from mice primed with herpes simplex virus type 1 (HSV-1) could be induced to differentiate into cytotoxic T lymphocytes (CTL) by in vitro culture with infectious HSV-1 but not by heat-inactivated virus. Induction of CTL failed to occur if the spleen cells were depleted of adherent cells by passage over columns of nylon wool before culture with virus. The CTL response could be restored by adding normal syngeneic peritoneal cells (PC) or L cell fibroblasts but not by allogeneic PC or BALB/c 3T3 fibroblasts. Thus, the induction of HSV-1-specific CTL was H-2 restricted. The response of HSV-1-stimulated nylon wool-depleted spleen cells could also be restored by adding amplifying factor (AF) produced in 24 hr mixed lymphocyte cultures. The addition of AF to nondepleted spleen cells also permitted the generation of CTL with heat-inactivated HSV-1 as a viral stimulant. Our results indicated that induction of a HSV-1 CTL response requires two signals, one provided by virus and a second, presumably nonspecific, by helper T cells. It was suggested that only the helper cells require H-2 restriction and need to be presented virus in the context of a macrophage.  相似文献   

16.
The B16 melanoma of C57BL/6 mice illustrates a deficiency in immunostimulation which may be important in some host-tumor relationships. B16 immunizes very poorly, even against its own major histocompatibility complex (MHC) antigens. We have compared the anti-MHC cytolytic response induced in vitro by B16 and by other tumors of both lymphoid and nonlymphoid origin. We have also studied the role of indomethacin and exogenous lymphokines in facilitating these responses and examined the relationship of specific and nonspecific effector cells induced. In contrast to normal lymphoid cells and two lymphoid tumor cells (EL4 and WEHI-265), the three nonlymphoid tumors, B16, Lewis lung tumor (3LL), and MC-2 fibrosarcoma, failed to induce primary cytolytic responses by themselves. MC-2 and B16 represented two different defects in immunogenicity. MC-2, which we have shown previously to induce an in vivo cytolytic response, could also immunize in vitro provided that prostaglandin production was blocked with indomethacin. In contrast B16, which is poorly immunogenic in vivo, immunized in vitro only if a concanavalin A-induced lymphokine supernatant (CS) was added as an exogenous source of "signal 2." High concentrations of the interleukin 2-containing Con A-induced spleen cell culture supernatant-induced non-H-2b-specific lymphokine-activated killer (LAK) cells in the absence of B16 stimulator cells. However, lymphokine concentrations too low to induce LAK cells enabled the otherwise nonimmunogenic B16 cells to induce specific cytolytic activity.  相似文献   

17.
It is not surprising that tumors arising spontaneously are rarely rejected by T cells, because in general they lack molecules to elicit a primary T-cell response. In fact, cytokine-engineered tumors can induce granulocyte infiltration leading to tumor rejection. In the present study, we i.d. injected seven kinds of non-engineered tumor cells into syngeneic strains of mice. Three of them (i.e. B16, KLN205, and 3LL cells) continued to grow, whereas four of them (i.e. Meth A, I-10, CL-S1, and FM3A cells) were spontaneously rejected after transient growth or without growth. In contrast to the i.d. injection of B16 cells into C57BL/6 mice, which induces infiltration of TAMs into the tumors, the i.d. injection of Meth A cells into BALB/c mice induced the invasion of cytotoxic inflammatory cells, but not of TAMs, into or around the tumors leading to an IFN-γ-dependent rejection. On day 5, the cytotoxic activity against the tumor cells reached a peak; and the effector cells were found to be neutrophils and macrophages. The i.d. Meth A or I-10 cell-immunized, but not non-immunized, mice rejected i.p.- or i.m.-transplanted Meth A or I-10 cells without growth, respectively. The main effector cells were CTLs; and there was no cross-sensitization between these two kinds of tumor cells, suggesting specific rejection of tumor cells by CTLs from i.d. immunized mice. These results indicate that infiltration of cytotoxic myeloid cells (i.e. neutrophils and macrophages, but not TAMs) into or around tumors is essential for their IFN-γ-dependent spontaneous rejection.  相似文献   

18.
In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus,51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are described here may be considered as a simple yet effective method for the preparation of tumor vaccines, which could be applied in tumor-bearing hosts.  相似文献   

19.
BALB/c mammary adenocarcinoma cells engineered to express TNF-related apoptosis-inducing ligand (TRAIL)/APO-2 ligand (APO-2L) on their membrane (TSA-TRAIL) grow with kinetics similar to that of parental cells (TSA-pc) in vitro and in nu/nu mice. In contrast, TSA-TRAIL cells grow faster than TSA-pc in normal BALB/c mice. In DBA/2 mice, which differ from BALB/c mice at minor histocompatibility Ags, they also grow faster and display a higher percentage of tumor takes than TSA-pc. In fully histoincompatible C57BL/6 (B6) mice, TSA-TRAIL cells form evident tumors that are slowly rejected by most mice, but outgrow in a few. In contrast, TSA-pc cells are rejected at once by B6 mice. Since TRAIL/APO-2L induces apoptosis by interacting with a variety of specific receptors, this rapid growth in both syngeneic and allogeneic mice may be the result of an immunosuppressive mechanism. The following evidence supports this hypothesis: 1) TSA-TRAIL cells overcome the strong immunity against TSA-pc cells elicited in BALB/c mice by preimmunization with TSA cells engineered to release IL-4; 2) their rejection by B6 mice does not prime a CTL-mediated memory; 3) thymidine uptake by T lymphocytes unstimulated or stimulated by allogeneic cells is inhibited when TSA-TRAIL cells are added as third party cells; 4) CTL kill TSA-pc but not TSA-TRAIL cells in 48-h assays; and 5) activated lymphocytes interacting with TSA-TRAIL cells in vivo and in vitro undergo apoptosis.  相似文献   

20.
Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule-1 (VCAM-1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen-specific cytotoxic T cells in vitro. However, after treatment with IFN-γ and IL-1β, MSCs upregulated MHCI, MHCII and VCAM-1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4(+) T cells from recipient rats. However, intravenous injection of allo-MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement-mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo-MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo-MSCs. Interestingly, no increased immunogenicity of IFN-γ stimulated allo-MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement-activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号