首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.  相似文献   

2.
刚地弓形虫(Toxoplasma gondii)在细胞内严格寄生,因此它能引起哺乳类宿主(包括人类)细胞的感染。凋亡在宿主细胞与弓形虫的相互作用中发挥着重要的作用。在未受感染的宿主细胞中,凋亡被间接机制所限制,因而宿主细胞能够对弓形虫发生炎症反应。与之相反,在被感染的宿主细胞中,由于凋亡信号级联反应直接受到了干扰,从而抑制了宿主细胞凋亡,这就有利于弓形虫在宿主细胞内的生存和发育。值得注意的是,弓形虫调节和抑制凋亡的两种能力,需要一个精密的调节系统来调控弓形虫和宿主细胞的相互作用,以维持弓形虫稳定的持续感染。重点从弓形虫有关的宿主细胞的凋亡方面进行了介绍。  相似文献   

3.
Tachyzoites of Toxoplasma gondii multiply within the parasitophorous vacuole (PV) until the lysis of the host cell. This study was undertaken to evaluate the effect of hydroxyurea (a specific drug that arrests cell division at G1/S phase) on the multiplication of T. gondii tachyzoites in infected Vero cells. Infected host cells were treated with hydroxyurea for periods varying from 5 to 48 h, and the survival and morphology of the parasite were determined. Hydroxyurea arrested intracellular T. gondii multiplication in all periods tested. After 48 h of incubation with hydroxyurea, intracellular parasites were not easily observed in Vero cells. Ultrastructural observations showed that infected host cells treated with hydroxyurea for 24 h or more presented disrupted intracellular parasites within the PV. However, the host cells exhibited a normal morphology. Our observations suggest that hydroxyurea was able to interfere with the cycle of the intracellular parasite, leading to the complete destruction of the T. gondii without affecting the host cells.  相似文献   

4.
The obligate intracellular protozoan Toxoplasma gondii resides within a specialized parasitophorous vacuole (PV), isolated from host vesicular traffic. In this study, the origin of parasite cholesterol was investigated. T. gondii cannot synthesize sterols via the mevalonate pathway. Host cholesterol biosynthesis remains unchanged after infection and a blockade in host de novo sterol biosynthesis does not affect parasite growth. However, simultaneous limitation of exogenous and endogenous sources of cholesterol from the host cell strongly reduces parasite replication and parasite growth is stimulated by exogenously supplied cholesterol. Intracellular parasites acquire host cholesterol that is endocytosed by the low-density lipoprotein (LDL) pathway, a process that is specifically increased in infected cells. Interference with LDL endocytosis, with lysosomal degradation of LDL, or with cholesterol translocation from lysosomes blocks cholesterol delivery to the PV and significantly reduces parasite replication. Similarly, incubation of T. gondii in mutant cells defective in mobilization of cholesterol from lysosomes leads to a decrease of parasite cholesterol content and proliferation. This cholesterol trafficking to the PV is independent of the pathways involving the host Golgi or endoplasmic reticulum. Despite being segregated from the endocytic machinery of the host cell, the T. gondii vacuole actively accumulates LDL-derived cholesterol that has transited through host lysosomes.  相似文献   

5.
Toxoplasma gondii is a protozoan parasite that infects a wide variety of warm-blooded animals and humans, in which it causes opportunistic disease. As an obligate intracellular parasite, T. gondii must invade a host cell to survive and replicate during infection. Recent studies suggest that T. gondii secretes a variety of proteins that appear to function during invasion or intracellular replication. These proteins originate from three distinct regulated secretory organelles called micronemes, rhoptries and dense granules. By discharging the contents of its secretory organelles at precise steps in invasion, T. gondii appears to timely deploy secretory proteins to their correct target destinations. Based on the timing of secretion and the characteristics of secretory proteins, an emerging theme is that T. gondii compartmentalizes its secretory proteins according to general function. Thus, it appears that micronemal proteins may function during parasite attachment to host cells, rhoptry proteins may facilitate parasite vacuole formation and host organellar association, and dense granule proteins likely promote intracellular replication, possibly by transporting and processing nutrients from the host cell. However, as more T. gondii secretory proteins are identified and characterized, it is likely that additional functions will be ascribed to each class of proteins secreted- by this fascinating invasive parasite.  相似文献   

6.
Apicomplexan parasites, including Toxoplasma gondii, apically attach to their host cells before invasion. Recent studies have implicated the contents of micronemes, which are small secretory organelles confined to the apical region of the parasite, in the process of host cell attachment. Here, we demonstrate that microneme discharge is regulated by parasite cytoplasmic free Ca2+ and that the micronemal contents, including the MIC2 adhesin, are released through the extreme apical tip of the parasite. Microneme secretion was triggered by Ca2+ ionophores in both the presence and the absence of external Ca2+, while chelation of intracellular Ca2+ prevented release. Mobilization of intracellular calcium with thapsagargin or NH4Cl also triggered microneme secretion, indicating that intracellular calcium stores are sufficient to stimulate release. Following activation of secretion by the Ca2+ ionophore A23187, MIC2 initially occupied the apical surface of the parasite, but was then rapidly treadmilled to the posterior end and released into the culture supernatant. This capping and release of MIC2 by ionophore-stimulated tachyzoites mimics the redistribution of MIC2 that occurs during attachment and penetration of host cells, and both events are dependent on the actin-myosin cytoskeleton of the parasite. These studies indicate that microneme release is a stimulus-coupled secretion system responsible for releasing adhesins involved in cell attachment.  相似文献   

7.
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.  相似文献   

8.
As an actively dividing organism, the intracellular parasite Toxoplasma gondii must adjust the size and composition of its membranes in order to accommodate changes due to housekeeping activities, to commit division and in fine to produce new viable progenies. Lipid inventory of T. gondii reveals that the biological membranes of this parasite are composed of a complex mixture of neutral and polar lipids. After examination of the origin of T. gondii membrane lipids, three categories of lipids can be described: (i) lipids scavenged by T. gondii from the host cell; (ii) lipids synthesized in large amounts by the parasite, independently from its host cell; and (iii) lipids produced de novo by the parasite, but whose synthesis does not come close to satisfying the entire parasite's needs. These latter must be adeptly acquired from the host environment. To this end, T. gondii diverts a large variety of lipid precursors from host cytoplasm and efficiently manufacture them into complex lipids. This rather remarkable reliance on host lipid resources for parasite survival opens new avenues to restrict parasite growth. Indeed, parasite starvation can be induced upon deprivation from essential host lipids. Lipid analogues with anti-proliferative properties are voraciously taken up by the parasites, which results in parasite membrane defects, and ultimately death.  相似文献   

9.
Successful host cell invasion is a prerequisite for survival of the obligate intracellular apicomplexan parasites and establishment of infection. Toxoplasma gondii penetrates host cells by an active process involving its own actomyosin system and which is distinct from induced phagocytosis. Toxoplasma gondii myosin A (TgMyoA) is presumed to achieve power gliding motion and host cell penetration by the capping of apically released adhesins towards the rear of the parasite. We report here an extensive biochemical characterization of the functional TgMyoA motor complex. TgMyoA is anchored at the plasma membrane and binds a novel type of myosin light chain (TgMLC1). Despite some unusual features, the kinetic and mechanical properties of TgMyoA are unexpectedly similar to those of fast skeletal muscle myosins. Microneedle-laser trap and sliding velocity assays established that TgMyoA moves in unitary steps of 5.3 nm with a velocity of 5.2 microm/s towards the plus end of actin filaments. TgMyoA is the first fast, single-headed myosin and fulfils all the requirements for power parasite gliding.  相似文献   

10.
Toxoplasma gondii is an obligate intracellular parasite that causes severe disease in humans. It is able to infect all nucleated mammalian cells leading to lifelong persistence of the parasite in the host. Here, we studied the effect of T. gondii infection on host cell proliferation and explored the molecular mechanisms involved in host cell cycle progression. We found that T. gondii induced G1/S transition in host cells in the presence of UHRF1, followed by G2 arrest after cyclin B1 downregulation which is probably the major cause of the arrest. Other molecules at the G2/M checkpoint including p53, p21 and Cdk1 were normally regulated. Interestingly, while parasite proliferation was normal in cells that were in the G2 phase, it was suppressed in G1-arrested cells induced by UHRF1-siRNA, indicating the importance of the G2 phase via UHRF1-induced G1/S transition for T. gondii growth.  相似文献   

11.
The intracellular parasite Toxoplasma gondii is known to inhibit apoptosis of its host cell. The molecular mechanisms of this interference are, however, not yet completely understood. We show here that viable parasites prominently inhibited the activation of caspase 3/7 induced by cytochrome c, dATP and dithiothreitol in cytosolic extracts of human-derived Jurkat leukemic T cells. In contrast, granzyme B-induced caspase activity was only slightly diminished. De novo protein biosynthesis by T. gondii was dispensable for the inhibition of cytochrome c-induced caspase activation. Furthermore, a complete parasite lysate or, more importantly, molecules released by extracellular parasites mediated the interaction with the caspase cascade. The cell-free system applied here is thus a valuable tool to study the interaction of T. gondii and possibly other intracellular pathogens with host cell apoptosis.  相似文献   

12.
Upon host cell invasion the apicomplexan parasite Toxoplasma gondii resides in a specialized compartment termed the parasitophorous vacuole that is derived from the host cell membrane but modified by the parasite. Despite the segregation of the parasitophorous vacuole from the host endocytic network, the intravacuolar parasite has been shown to acquire cholesterol from the host cell. In order to characterize further the role of sterol metabolism in T. gondii biology, we focused our studies on the activity of acyl-CoA:cholesterol acyltransferase (ACAT), a key enzyme for maintaining the intracellular homeostasis of cholesterol through the formation of cholesterol esters. In this study, we demonstrate that ACAT and cholesterol esters play a crucial role in the optimal replication of T. gondii. Moreover, we identified ACAT activity in T. gondii that can be modulated by pharmacological ACAT inhibitors with a consequent detrimental effect on parasite replication.  相似文献   

13.
Toxoplasma gondii parasites gain entry into host cells through a process that depends on apically stored adhesins that are strategically released during invasion. One of these adhesins, microneme protein 2 (MIC2), is a type one transmembrane protein that binds to an accessory protein known as MIC2-associated protein (M2AP). Together the MIC2 x M2AP complex participates in host cell attachment and invasion. The short cytoplasmic C-domain of MIC2 is implicated in protein trafficking and mediating an association with the parasite cytoskeleton. To define the role of the cytoplasmic domain of MIC2, proteins lacking the C-domain were expressed in transgenic T. gondii. Surprisingly, protein trafficking and secretion were not affected. We hypothesized that mutant mic2 lacking the C-domain might be escorted to the micronemes by association with endogenous wild-type MIC2 possessing functional transmembrane and cytoplasmic domains. To investigate this interaction, native blue gels and gel filtration were employed to identify a stable macromolecular MIC2 x M2AP complex of approximately 450 kDa. Our findings reveal that MIC2 and M2AP proteins form stable hexamers consisting of three alphabeta dimers. Resolution of this complex has implications for how MIC2 x M2AP associates with host cell receptors and the cytoskeleton to facilitate parasite motility and invasion.  相似文献   

14.
Toxoplasma gondii is an intracellular parasite that invades nucleated cells, causing toxoplasmosis in humans and animals worldwide. The extremely wide range of hosts susceptible to T. gondii is thought to be the result of interactions between T. gondii ligands and receptors on its target cells. In this study, a host cell-binding protein from T. gondii was characterized, and one of its receptors was identified. P104 (GenBank Access. No. CAJ20677) is 991 amino acids in length, containing a putative 26 amino acid signal peptide and 10 PAN/apple domains, and shows low homology to other identified PAN/apple domain-containing molecules. A 104-kDa host cell-binding protein was detected in the T. gondii lysate. Immunofluorescence assays detected P104 at the apical end of extracellular T. gondii. An Fc-fusion protein of the P104 N-terminus, which contains two PAN/apple domains, showed strong affinity for the mammalian and insect cells evaluated. This binding was not related to protein-protein or protein-lipid interactions, but to a protein-glycosaminoglycan (GAG) interaction. Chondroitin sulfate (CS), a kind of GAG, was shown to be involved in adhesion of the Fc-P104 N-terminus fusion protein to host cells. These results suggest that P104, expressed at the apical end of the extracellular parasite, may function as a ligand in the attachment of T. gondii to CS or other receptors on the host cell, facilitating invasion by the parasite.  相似文献   

15.
A fundamental property of any eukaryotic cell is endocytosis, that is the ability to take up external fluid, solutes and particulate matter into membrane-bound intracellular vesicles by various mechanisms. Toxoplasma gondii is an intracellular protozoan parasite of the phylum Apicomplexa with a wide geographical and host range distribution. Significant progress in studying the cell biology of this parasite has been accomplished over the last few years. Only recently endocytic compartments and endocytic trafficking have come to a closer dissection in T. gondii. In this review, we discuss the evidence for an endocytic compartment and present a model for an endocytic pathway in Toxoplasma against a background of endocytosis in kinetoplastida and the extensive insights gained from mammalian and yeast cells.  相似文献   

16.
17.
The intracellular protozoan parasite Toxoplasma gondii shares with other members of the Apicomplexa a common set of apical structures involved in host cell invasion. Micronemes are apical secretory organelles releasing their contents upon contact with host cells. We have identified a transmembrane micronemal protein MIC6, which functions as an escorter for the accurate targeting of two soluble proteins MIC1 and MIC4 to the micronemes. Disruption of MIC1, MIC4, and MIC6 genes allowed us to precisely dissect their contribution in sorting processes. We have mapped domains on these proteins that determine complex formation and targeting to the organelle. MIC6 carries a sorting signal(s) in its cytoplasmic tail whereas its association with MIC1 involves a lumenal EGF-like domain. MIC4 binds directly to MIC1 and behaves as a passive cargo molecule. In contrast, MIC1 is linked to a quality control system and is absolutely required for the complex to leave the early compartments of the secretory pathway. MIC1 and MIC4 bind to host cells, and the existence of such a complex provides a plausible mechanism explaining how soluble adhesins act. We hypothesize that during invasion, MIC6 along with adhesins establishes a bridge between the host cell and the parasite.  相似文献   

18.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

19.
Host cell cholesterol is implicated in the entry and replication of an increasing number of intracellular microbial pathogens. Although uptake of viral particles via cholesterol-enriched caveolae is increasingly well described, the requirement of cholesterol for internalization of eukaryotic pathogens is poorly understood and is likely to be partly organism specific. We examined the role of cholesterol in active host cell invasion by the protozoan parasite Toxoplasma gondii. The parasitophorous vacuole membrane (PVM) surrounding T. gondii contains cholesterol at the time of invasion. Although cholesterol-enriched parasite apical organelles termed rhoptries discharge at the time of cell entry and contribute to PVM formation, surprisingly, rhoptry cholesterol is not necessary for this process. In contrast, host plasma membrane cholesterol is incorporated into the forming PVM during invasion, through a caveolae-independent mechanism. Unexpectedly, depleting host cell plasma membrane cholesterol blocks parasite internalization by reducing the release of rhoptry proteins that are necessary for invasion. Cholesterol back-addition into host plasma membrane reverses this inhibitory effect of depletion on parasite secretion. These data define a new mechanism by which host cholesterol specifically controls entry of an intracellular pathogen.  相似文献   

20.
Apicomplexan parasites exhibit actin-dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin-like protein that is recognized by Toll-like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11-dependent production in vitro and in vivo of the defensive host cytokine interleukin-12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号