首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The experimental opening and resealing of occluding junctions in monolayers of cultured MDCK cells (epithelioid of renal origin) was explored by measuring changes in the electrical resistance across the monolayer and by freeze-fracture electron microscopy. As in natural epithelia, the function of occluding junctions as permeability barriers specifically depends on extracellular Ca++ concentration and fails if this ion is replaced by Mg++ or Ba++. The removal of Ca++ and the addition of EGTA to the bathing medium opened the junctions and reduced the transepithelial resistance. Resealing was achieved within 10-15 min by restoring Ca++. Quantitative freeze-fracture electron microscopy showed that junctional opening, caused by lack of Ca++, was accompanied by simplification of the pattern of the membrane strands of the occluding junction without disassembly or displacement of the junctional components. Resealing of the cellular contacts involved the gradual return to a normal junctional pattern estimated as the average number of strands constituting the junction. The occluding junctions were also opened by the addition of the ionophore A23187, suggesting that the sealing of the contacts requires high Ca++ on the extracellular side and low Ca++ concentration of the cytoplasmic compartment. The opening process could be blocked by low temperature (7.5 degrees C). Resealing did not depend on serum factors and did not require protein synthesis; therefore, it seems to be caused by reassembly of preexisting membrane junctional components. The restoration of the junctions occurred simultaneously with the establishment of ion-selective channels; the Na+/Cl- and the cation/cation selectivity were recovered with the same time-course as the electrical resistance. The role of the cytoskeleton in the process of junctional reassembly is reported in the companion article.  相似文献   

2.
Summary Crypt, but not villus, goblet cells in the ileum accelerate their secretion of mucus within 5 min following cholinergic stimulation. This study was done to determine whether the macromolecular permeability and structure of occluding junctions in the ileum are altered during accelerated secretion. Rats were injected intravenously with horseradish peroxidase followed by carbachol (250 g/kg, subcutaneous) and the intestinal mucosa was fixed 3–12 min later. In control mucosa (saline-injected), peroxidase filled lateral intercellular spaces up to the occluding junctions of both crypt and villus epithelium, but did not enter occluding junctions or pass into the lumen. In 3 of 8 carbachol-stimulated rats, peroxidase was present within occluding junctions in crypt epithelium and in the crypt lumen, although all intermembrane junctional fusion sites appeared intact. Villus epithelial occluding junctions, in contrast, continued to exclude peroxidase. In freeze-fracture replicas of crypt cells prepared after carbachol stimulation, we detected no structural changes in strand networks of occluding junctions that could account for increased paracellular permeability.  相似文献   

3.
Spermatocysts develop within the lumina of the lepidopteran testis. Each spermatocyst contains a clone of maturing germ cells which are separated from the fluid in the testicular lumen by a layer of somatic envelope cells. A blood-testis barrier is located at the level of the somatic envelope cells. We used macromolecular tracers horseradish peroxidase (applied before fixation) and ruthenium red (applied during fixation) with thin sections and freeze-fracture replicas to study the nature of this barrier in spermatocysts of the tobacco budworm, Heliothis virescens. Movement of the tracers into the spermatocysts was blocked by a structure at the outer edge of the septate junctions which join the spermatocyst envelope cells. In freeze-fracture replicas there was a P-face ridge or an E-face groove in this location. The ridge/groove appeared similar to a single-stranded vertebrate tight junction. Unlike tight junctions, however, there was no fusion or even close apposition of adjacent cell membranes in this location. We conclude, therefore, that a novel type of occluding junction was the barrier to paracellular movement of macromolecules in Heliothis spermatocysts.  相似文献   

4.
Contact areas of PHA-stimulated and consequently agglutinated rabbit peripheral blood and spleen lymphocytes were studied with ultrathin-section and freeze-fracture techniques. Broad contact zones (BCZ) between adjacent cells were characterized in freeze-fracture replicas as plasma membrane areas in which at the protoplasmic fracture face (PF) a heterogeneous population of redistributed intramembranous particles (IMP) appear to assemble. In addition homogeneous particles of 11 nm diameter, found to be concentrated at the external fracture face (EF) at the site of the BCZ, aggregate to clusters and after longer culture periods appear to participate in the formation of gap junctional complexes. Evidence is provided that the BCZ—probably an area of concentrated PHA-binding sites—may well serve as a formation plaque for gap junction constitution in the system studied.  相似文献   

5.
Summary Two kinds of occluding junctions are found between ileal epithelial cells of suckling rats: apical zonulae occludentes (ZO) and fasciae occludentes (FO) which are associated with the lateral plasma membranes of many epithelial cells. In unfixed preparations, glycerol treatment induces the further proliferation of extensive fasciae occludentes. Both kinds of junction have identical structural elements when visualized in freeze fracture replicas, although the arrangement of these elements differs. Zonulae occludentes consist of networks of branching and anastomosing linear ridges or rows of 10 nm particles with 20–30 nm spaces between the rows which form narrow belt-like structures around the apical region of adjacent cells. Fasciae occludentes, on the other hand, consist of similar linear ridges or rows of particles but the junction strands are often discontinuous, open ended and only occasionally intersect with each other. Several different fracture planes through the plasma membrane in the region of the occluding junctions have been observed and these provide further evidence that two components, one from each membrane, fused at the level of the extracellular space, form the junction sealing element. Furthermore, we present evidence which indicates a staggered rather than an in-register arrangement of these two components.This study was supported in part by National Institutes of Health Program Project No. NS10299 and National Institutes of Health Sciences Advancement Award No. RR06148 (J.D.R.) and by the Cancer Research Campaign (S.K.) and Medical Research Council (A.R.L.)  相似文献   

6.
Intestinal absorptive cells may modulate both the structure and function of occluding junctions by a cytoskeleton dependent mechanism (Madara, J. L., 1983, J. Cell Biol., 97:125-136). To further examine the putative relationship between absorptive cell occluding junctions and the cytoskeleton, we assessed the effects of cytochalasin D (CD) on occluding junction function and structure in guinea pig ileum using ultrastructural and Ussing chamber techniques. Maximal decrements in transepithelial resistance and junctional charge selectivity were obtained with 10 micrograms/ml CD and the dose-response curves for these two functional parameters were highly similar. Analysis of simultaneous flux studies of sodium and the nonabsorbable extracellular tracer mannitol suggested that CD opened a transjunctional shunt and that this shunt could fully account for the increase in sodium permeability and thus the decrease in resistance. Structural studies including electron microscopy of detergent-extracted cytoskeletal preparations revealed that 10 micrograms/ml CD produced condensation of filamentous elements of the peri-junctional contractile ring and that this was associated with brush border contraction as assessed by scanning electron microscopy. Quantitative freeze-fracture studies revealed marked aberrations in absorptive cell occluding junction structure including diminished strand number, reduced strand-strand cross-linking, and failure of strands to impede the movement of intramembrane particles across them. In aggregate these studies show that CD-induced perturbation of the absorptive cell cytoskeleton results in production of a transepithelial shunt which is fully explained by a defect in the transjunctional pathway. Furthermore, substantial structural abnormalities in occluding junction structure accompany this response. Lastly, the abnormalities in occluding junction structure and function coincide with structural changes in and contraction of the peri-junctional actin-myosin ring. These data suggest that a functionally relevant association may exist between the cytoskeleton and the occluding junction of absorptive cells. We speculate that such an association may serve as a mechanism by which absorptive cells regulate paracellular transport.  相似文献   

7.
The modulation of Sertoli cell junctions was studied in the non-seasonal rooster (Gallus domesticus) and in the seasonally breeding mallard duck (Anas platyrynchos anatidae) using thin sectioning, a junction permeability tracer, and freeze-fracture replication. During the active spermatogenic phase, the junctions of the duck appeared similar to those of the rooster, thereby establishing the duck as an avian model of seasonal modulation of Sertoli cell junctions. As with mammalian seasonal breeders, during the active phase, occluding, gap, and adhering junctions formed a junctional complex all along the long axis of the Sertoli cell. Unlike in mammals, however, no 7-nm filaments were associated with the occluding junctions. An occluding zonule encircled the Sertoli cell apico-lateral membrane domain situated above the young germ cells, and constituted a barrier to the entry of lanthanum in the basal third of the seminiferous epithelium. Toward the basal side, forming focal junctions were located on the lateral Sertoli cell membrane domain facing the young germ cells. Toward the apical side, dismantling focal junctions were located on the apical Sertoli cell membrane domain facing the older germ cells. During the duck's testicular regression, 7-nm filaments were associated with an occluding junction. In freeze-fracture replicas, each junction was formed by a continuous junctional strand that encircled the apex of the cell. The strands composed a delicate narrow meshwork: an occluding zonule. The blood-testis barrier was localized near the apex of the epithelium. The seasonal reduction in the number of the strands and the changes in their orientation did not coincide with a change in the permeability of the occluding zonule to lanthanum. In addition, the cyclic disappearance of junction-associated filaments was not correlated with a change in the permeability of the junctions but with a change in the affinity of junctional particles for one or the other fracture face. It is proposed that the Sertoli cell plasma membrane domains situated apical and basal with respect to the occluding zonule be considered apical and lateral, respectively. The remaining domain facing the basement membrane would therefore be called basal. In the duck, the occluding zonule is not seasonally shifted from the base to the apex of the Sertoli cell. Instead, it remains stationed above the younger germ cells throughout the year.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Summary The paracellular conducting pathway of theNecturus gallbladder was studied with electrophysiological and electromicroscopic methods. The first one consists of the passage of short (5 msec) and small (32 A cm–2) current pulses associated with a voltage scanning of the plane of the epithelium at the apical surface with a microelectrode to detect the regions where current flows. The procedure shows that (a) the conductance is evenly distributed along the intercellular regions along the intercellular spaces of the cells where occluding junctions are located; (b) the field above the occluding junctions has the shape of a bell, so that the junction can be sensed at 1–2 m from the region where the intercellular space is visualized by light microscopy; (c) the intersections between three cells, in spite of having 3 half-junctions contributing (instead of two), do not have a higher conductance than the rest of the occluding junction. Scanning electron microscopy shows that (a) cells are densely covered by microvilli which interdigitate above the region of the occluding junctions, and (b) are covered by a surface coat. With transmission electron microscopy, (a) the opening of the occluding junctions at the apical border appears irregular, and most of them oblique; (b) in the last microns the actual mouth of the junction may deviate from the course of the interspace. Freeze-fracture replicas indicate that (a) the occluding junction has a uniform width and little variations in the number of strands around the cell, except (b) at intersections between 3 cells where both, its width and the number of strands, increase toward the basal region.  相似文献   

9.
Lymph nodes from six patients with Hodgkin’s disease (three with the nodular sclerosing subtype, one with mixed cellularity and two with the lymphocyte-predominant subtype) were analysed by electron microscopy in freeze-fracture replicas and thin sections. Two main variants of Hodgkin cell could be identified in the nodular sclerosing and mixed cellularity subtypes. (1) Hodgkin cells with wide cytoplasm and short, smooth- and rough-surfaced tubular profiles of endoplasmic reticulum (ER) unevenly scattered in the cytoplasm. (2) Hodgkin cells with well developed rough ER. In freeze-fracture replicas the ER was seen to consist of both short and long tubules, some of the latter forming anastomoses with each other. Both cell types possessed branching cytoplasmic processes. A P-face rich in intramembrane particles (IMP) and an E-face with few IMP were common to both Hodgkin cell types. These cells do not, therefore, possess the membrane features characteristic of interdigitating reticulum cells, thus refuting the previously held belief that Hodgkin cells, in particular lacunar cells, are related to interdigitating reticulum cells. The cytoplasmic structures and membrane characteristics of Hodgkin cells in the lymphocyte-predominant subtype (L & H cells) are similar to other Hodgkin cells in that they may show a high content of rER, and the P-face of these cells contains more IMP than the E-face. Both characteristics support the theory put forward in the literature (based on immunohistochemical findings) that these are lymphoid cells (immunoblasts or immature plasma cells).  相似文献   

10.
Summary The yolk platelets ofXenopus laevis have been studied by thin-section and freeze-fracture electron microscopy to characterize the boundary membrane during yolk formation. Throughout vitellogenesis, large yolk platelets are in close contact with smaller nascent yolk organelles. Two types of primordial yolk platelets (I and II) have been discriminated. After membrane fusion these precursors can be completely incorporated into the main body of existing platelets, numerous yolk crystals then merge and form one uniformly stratified core. Lipid droplets are tightly attached to the membrane at all developmental stages of yolk platelets. A direct connection of endoplasmic reticulum to the membranes of yolk platelets was not observed. On freezeetching replicas, yolk-platelet membranes present fracture faces with intramembranous particles (IMP) of various sizes and a heterogeneous distribution of approximately 200–600 IMP/μm2 at the E face, and 1200–2100 IMP/μm2 at the P face. Again, this presentation of the membrane exhibits neither anastomoses to the endoplasmic reticulum, nor caveolae that exclude the uptake of yolk-containing vesicles into these yolk organelles. Proteinaceous yolk platelets tend to fracture along their periphery through the superficial layers.  相似文献   

11.
Lymph nodes from six patients with Hodgkin's disease (three with the nodular sclerosing subtype, one with mixed cellularity and two with the lymphocyte-predominant subtype) were analysed by electron microscopy in freeze-fracture replicas and thin sections. Two main variants of Hodgkin cell could be identified in the nodular sclerosing and mixed cellularity subtypes. (1) Hodgkin cells with wide cytoplasm and short, smooth- and rough-surfaced tubular profiles of endoplasmic reticulum (ER) unevenly scattered in the cytoplasm. (2) Hodgkin cells with well developed rough ER. In freeze-fracture replicas the ER was seen to consist of both short and long tubules, some of the latter forming anastomoses with each other. Both cell types possessed branching cytoplasmic processes. A P-face rich in intramembrane particles (IMP) and an E-face with few IMP were common to both Hodgkin cell types. These cells do not, therefore, possess the membrane features characteristic of interdigitating reticulum cells, thus refuting the previously held belief that Hodgkin cells, in particular lacunar cells, are related to interdigitating reticulum cells. The cytoplasmic structures and membrane characteristics of Hodgkin cells in the lymphocyte-predominant subtype (L & H cells) are similar to other Hodgkin cells in that they may show a high content of rER, and the P-face of these cells contains more IMP than the E-face. Both characteristics support the theory put forward in the literature (based on immunohistochemical findings) that these are lymphoid cells (immunoblasts or immature plasma cells).  相似文献   

12.
Summary Isolated segments of hamster small intestine were perfused with oxygenated salt-fluorocarbon emulsions with or without 10–25mm glucose, alanine or leucine. Resistances of inter-cellular occluding junctions and of lateral spaces and the distributed capacitance of epithelial plasma membranes were estimated from steady-state transepithelial impedances at frequencies from 0.01–10 kHz. The segments were then fixedin situ with isorheic 2.5% glutaraldehyde while continuing to measure impedance. This method of fixation increased the resistance of lateral spaces but had little effect on the resistance of occluding junctions or on membrane capacitance. The large decreases of impedance induced by glucose or amino acids were preserved in fixed tissue and could therefore be correlated with changes in structure. The observed changes of impedance were interpreted as decreased resistance of occluding junctions and lateral spaces together with increased exposed surface of lateral membranes (capacitance). Glucose, alanine or leucine induced expansion of lateral intercellular spaces as seen by light and electron microscopy. Large dilatations within absorptive cell occluding junctions were revealed by electron microscopy. Freeze-fracture analysis revealed that these dilatations consisted of expansions of compartments bounded by strands/grooves. These solute-induced structural alterations were also associated with condensation of microfilaments in the zone of the perijunctional actomyosin ring, typical of enhanced ring tension. Similar anatomical changes were found in epithelia fixedin situ at 38°C during luminal perfusion with glucose in blood-circulated intestinal segments of anesthetized animals. These structural changes support the hypothesis that Na-coupled solute transport triggers contraction of perijunctional actomyosin, thereby increasing junctional permeability and enhancing absorption of nutrients by solvent drag as described in the two accompanying papers.  相似文献   

13.
The historical development of concepts of gap junctions as sites for electrical, ionic, and metabolic coupling is reviewed, from the initial discovery of gap junctions linking heart cells, to the current concepts that gap junctions represent 'electrotonic synapses' between neurons. The ultrastructure and immunocytochemistry of gap junctions in heart, brain, and spinal cord of adult rats is examined using conventional thin sections, negative staining, grid-mapped freeze-fracture replicas, and immunogold-labeled freeze-fracture replicas. We review evidence for neuronal gap junctions at 'mixed' (combined electrical and chemical) synapses throughout adult rat spinal cord. We also show immunogold labeling of connexin43 in astrocyte and ependymocyte gap junctions and of connexin32 in oligodendrocyte gap junctions. Ultrastructural and freeze-fracture immunocytochemical methods have provided for definitive determination of the number, size, histological distribution, and connexin composition of gap junctions between neurons in all regions of the central nervous systems of vertebrate species.  相似文献   

14.
Summary The cortical cell membranes of maize and marrow roots grown at normal, or chilling, temperatures have been studied by freeze-fracture electron microscopy. Using computer-assisted methods to analyse intramembraneous particle (IMP) frequencies, diameters and distribution, no significant trends in differences between normal and chilled roots were found. While this result does not correspond with the findings from similar experiments on microorganisms, it is compatible with contemporary ideas concerning temperature-induced phase transitions in the lipids of higher plant cell membranes. The cortical cell membranes of barley roots that had been subjected to cold osmotic shock also showed no differences from untreated roots as demonstrable in freeze-fracture replicas.IMPs were found to cluster around plasmodesmata after chilling but the physiological significance of this, if any, remains to be investigated further.While these negative results only indirectly help towards understanding how cell membranes react to chilling, the techniques described open the way for more detailed analyses of IMP characteristics in plant cell membranes.  相似文献   

15.
Summary Labyrinth and nephridial canal cells of the crayfish (Orconectes virilis) antennal gland possess two types of intercellular junctions revealed by freeze-fracture studies. Apical margins of the cells are connected by long septate junctions. In replicas, these junctions consist of many parallel rows of 80–140 Å intramembrane particles situated on the PF membrane face (EF and PF fracture faces of Branton et al., 1975). Rows of pits are found on the EF fracture face and are deemed complementary to the rows of particles. Moreover, lateral margins of basal regions of the epithelial cells are attached by many intercellular junctions. These contacts are characterized in thin plastic sections by a narrow dense cytoplasmic plaque located subjacent to the plasma membrane at sites of adjoined cells, and 5 to 12 fine strands of dense material that extend across the intercellular gap between adjoined cells. In freeze-fracture replicas, EF intramembrane faces basal to the region of the plasma membrane containing septate junctions exhibit numerous discoid clusters of particles. The particle aggregates, assumed to represent freeze-cleave images of adhering junctions, range from 900 to 3,700 Å in diameter, with individual particles about 185 Å in diameter. These junctions appear to connect epithelial cell processes formed by basal infoldings of the plasma-lemma, and occur between adjacent cells as well as adjacent processes of a single cell. The discrete aggregates of particles resemble replicated desmosomes (Shienvold and Kelly, 1974) and hemi-desmosomes (Shivers, 1976); therefore, they probably do not constitute a basis for electrical coupling between antennal gland epithelial cells.Supported by the National Research Council of Canada  相似文献   

16.
We describe morphologic and biochemical changes in the colonic epithelial HCT-116 cell line following depletion of glucose from the culture medium. Cultured cells under permissive differentiation conditions (inosine-supplemented glucose-free medium) exhibited, after confluence, an enterocytic differentiation, in contrast to cells grown under standard culture conditions, where they remain in an undifferentiated state. The differentiated phenotype was characterized by the presence of a monolayer of polarized cells displaying an apical tight junction, and by the presence of alkaline phosphatase, a well known brush border marker. We demonstrated that the formed tight junctions were functional using the following criteria: a) labeling of the junctions with antibodies recognizing the tight juntion proteins occludin and ZO-1, as observed by immunofluorescence and immunoblotting analysis; b) characteristic organization of the tight junction strands, as observed in freeze-fracture replicas; c) increase ofthe transepithelial resistance across the monolayer; d) not permeation of the ruthenium red stain across the tight junction, and e) presence of the hyperphosphorylated form of occludin.  相似文献   

17.
We have used freeze-fracture electron microscopy to investigate the relationship between the formation of the tight junction in the establishment of a differential distribution of intramembranous particles (IMPs) between the luminal and basolateral membranes of a canine kidney cell line (MDCK). This involves a characterization of the IMP distribution in these membranes in confluent monolayers of MDCK cells, in EGTA-dissociated cells, and in cells at various stages of reassociation. While normal confluent MDCK monolayer cultures exhibit tight junctions and an IMP differential distribution between the luminal and basolateral membranes, cultures dissociated with EGTA lose both formed tight junctional elements and the differential IMP distribution. We have also found that as tight junctions reform between reaggregating MDCK cells, intramembranous particles appear to rapidly redistribute with respect to them. An asymmetric distribution of these particles in the luminal and basolateral membranes is eventually achieved. Tight junction formation appears so closely linked to the genesis of IMP polarity that at early time points when only a string of tight junctional components spans the junctional zone, differential IMP distributions are seen. Thus, our dissociation studies suggest a close relationship between the integrity of the tight junction and the maintenance of IMP polarity between the luminal and basolateral membranes, while cell reassociation studies suggest that the tight junction may be functionally linked to the genesis of IMP polarity.  相似文献   

18.
19.
Summary The decrease in the metabolic capacity of rat brown adipose tissue during the late postnatal period can be reversed by cold acclimation of the animals. In order to find out whether a parallel decrease in capability for intercellular communication observed during this period is also reversed by cold acclimation, gap junction size and number per unit area of cell surface have been quantified in freeze-fracture replicas; cell diameters have been measured in semi-thin sections. It was found that the specific number of gap junctions remains unchanged during cold acclimation. However, the mean gap junction size increases by 75% and the ratio of gap junctional area per cell volume, an index for intercellular exchange capacity, is doubled. This result illustrates further the parallelism between metabolic capacity and cell communication in brown fat.  相似文献   

20.
Crustecdysone, the hormone responsible for onset and regulation of the molt cycle in Crustacea, causes an increase in ionic coupling of cells of the hepatopancreas concomitant with the events of the molt. Hepatopancreatic tissue incubated for up to 4 hr in modified Eagle Basal Medium containing crustecdysone, exhibited an approximate 29% decrease in intercellular resistance as compared with tissue incubated in control medium. This represents a 29% increase in ionic coupling between hepatopancreatocytes following treatment with crustecdysone. Examination of platinum replicas of freeze-fractured, crustecdysone-treated hepatocyte plasma membrane revealed that most of the gap junction plaques were round with tightly packed intramembrane particles; a condition indicative of highly coupled cells. Similar preparations of control plasmalemmae demonstrated many gap junction plaques which were round or irregular in shape with very loosely packed particles and were indicative of uncoupled junctions. Results of this study are identical to those from a previous investigation of the electrophysiology and freeze-fracture morphology of hepatopancreatocytes during the molt cycle (McVicar and Shivers, 1984), and are thus presumed to reflect a crustecdysone-controlled increase in cell communications in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号