首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication origins of single-stranded-DNA plasmid pUB110.   总被引:18,自引:6,他引:12       下载免费PDF全文
The two replication origins of plasmid pUB110 have been characterized. The site of initiation of DNA replication at the plus origin was mapped to within an 8-base-pair sequence. DNA synthesis initiated at the origin was made to terminate precociously in an inserted sequence of 18 base pairs that is homologous to a sequence in the origin. This suggests that pUB110 replicates as a rolling circle. The minus origin of plasmid pUB110 has been characterized, and the minimal sequence required for function has been determined. As with other minus origins, activity is orientation specific with respect to the direction of replication. Its activity is sensitive to rifampin in vivo, suggesting that RNA polymerase catalyzes single-strand to double-strand conversion. Unlike all other plasmids of gram-positive bacteria thus far described, the pUB110 minus origin is functional in more than one host.  相似文献   

2.
The in vitro membrane binding of pSL103, a composite plasmid consisting of Staphylococcus aureus plasmid pUB110 and a Bacillus pumilus trpC+ DNA fragment, to the Bacillus subtilis membrane fraction was studied with a total lysate of B. subtilis cells. The binding reaction required a heat treatment at 45 degrees C and had an optimum KCl concentration of 60 mM. Nonradioactive pSL103, but not Escherichia coli plasmid pACYC184, competed with 3H-labeled pSL103 for binding to the membrane. By the use of 32P-labeled restriction fragments of pSL103 and pUB110, it has been found that only the pUB110 portion of pSL103 binds to the membrane and that there are four specific regions in pUB110 which bind to the membrane. Two of the four binding regions flank the replication origin. This in vitro binding was high-salt sensitive and apparently independent of the configurations of the plasmid. We have previously shown that the functional product of the initiation gene dna-1 is required in vivo both for replication initiation and the binding of a DNA region near the replication origin to the membrane. Unlike in vivo binding, which is high-salt resistant and dependent on the product of dna-1 gene (type-I binding), the in vitro binding reported in this paper was high-salt sensitive and independent of the dna-1 gene product (type-II binding).  相似文献   

3.
Supercoiled plasmid DNA is the substrate for initiation of pUB110 replication, and - by inference - for binding of its initiator protein (RepU) to the plasmid replication origin (oriU) in vivo. No hairpin structure is required for RepU-oriU recognition. RepH (the pC194 replication initiation protein) failed to initiate replication in trans at oriU. The nucleotides that determine the specificity of the replication initiation process are located within oriU but termination is unefficient. Therefore the segment that forms the full recognition signal for termination is probably located 3' of the oriU recognition sequence. Two overlapping domains, one for initiation and one required for termination, compose the leading strand replication origin of plasmid pUB110.  相似文献   

4.
Abstract We have developed a strategy for the integration and stable amplification of DNA sequences in the chromosome of poorly transformable bacilli, which avoids the presence of a functional plasmid replication system in the integrated DNA. The parental vector for integration contains two plus origins of replication from pUB110 in the same orientation on a single plasmid. Due to the direct repeats, such plasmids produce two individual progeny vectors, one of which is dependent on the other for replication, as it lacks a functional rep gene. We have used such a progeny vector system to integrate and amplify DNA on the chromosome of Bacillus licheniformis , and show that the structure is stable in the absence of selective pressure.  相似文献   

5.
Plasmids pMV158 and pTB913, originating from Streptococcus agalactiae and a thermophilic Bacillus respectively, were sequenced to completion. Both contained a BA3-type minus origin of replication and an RSA-site, believed to constitute a site-specific recombination site. These two regions were more than 99% homologous to the corresponding regions of the Staphylococcus aureus plasmid pUB110. Deleting the BA3-type minus origin resulted in the accumulation of a considerable amount of single-stranded DNA, both in L. lactis subsp. lactis and B. subtilis, indicating that this minus origin was functional in both bacterial species. Like pUB110, both plasmids contained an open reading frame encoding a putative plasmid recombination enzyme (Pre protein), which was located downstream of the RSA-site. On the basis of sequence comparisons between pUB110, pMV158, pTB913, pT181, pE194, pNE131 and pT48 two distinct families of RSA-sites and Pre proteins could be distinguished.  相似文献   

6.
Plasmid replication in DNA Ts mutants of Bacillus subtilis.   总被引:11,自引:0,他引:11  
A G Shivakumar  D Dubnau 《Plasmid》1978,1(3):405-416
In an attempt to increase our understanding of plasmid replication in Bacillus subtilis we determined the effect of various dna Ts mutations [Gass, K. B., and Cozzarelli, N. R. (1973). J. Biol. Chem. 248, 7688–7700; Gross, J. D., Karamata, D., and Hempstead, P. G. (1968). Cold Spring Harbor Symp. Quant. Biol.33, 307–312; Karamata, D., and Gross, J. D. (1970). Mol. Gen. Genet.108, 277–287] on pUB110 replication. pUB110 is a kanamycin resistance plasmid originally isolated in Staphylococcus aureus and introduced into B. subtilis by transformation. At temperatures nonpermissive for chromosomal DNA synthesis dnaA13, dnaB19, dnaC6, dnaC30, dnaD23, dnaE20, and dnaI102 permit replication of the plasmid. In several cases this “amplification” continues until approximately equal amounts of plasmid and chromosomal DNA are present. dnaG34, dnaH151, dnaF133, mut-1, and polC26 affect both pUB110 and host DNA synthesis at nonpermissive temperatures. The last three mutations are known to affect the activity of DNA polymerase III (PolIII). When polC26 is incubated at a nonpermissive temperature, there is an accumulation of plasmid DNA with a density on EtBr-CsCl gradients intermediate between that of covalently closed circular (CCC) and open circular DNA. pUB110 can replicate in a strain which is deficient in DNA polymerase I (PolI). Finally, chloramphenicol (Cm) inhibits the replication of pUB110 as well as of chromosomal DNA.  相似文献   

7.
8.
The complete nucleotide sequence of Staphylococcus aureus plasmid pUB10 was determined. The sequence consists of 4545 b.p. and contains 64% A-T and 36% G-C pairs. pUB110 was found to contain four open reading frames, capable of coding for polypeptides having more than 80 amino acids. All the putative polypeptides are coded for by one DNA strand. The molecular weights of four putative polypeptides are (in kilodaltons): A-49.5; B-38.8; C-28.8 and D-9.5. Polypeptide C is involved in kanamycin resistance. Polypeptide B is, possibly, involved in pUB110 replication. No role has yet been established for polypeptides A and D, since deletions in their coding sequences have no detectable effect on any properties of pUB110 plasmid.  相似文献   

9.
Summary We determined the effect of various Bacillus subtilis dna(Ts) mutations on pUB110 and chromosomal replication. Leading strand DNA synthesis of pUB110, starting by a nick at the plasmid replication origin (oriU), is performed by DNA polymerase III, since replication is blocked at non-permissive temperature in thermosensitive mutants dnaD, dnaF, dnaH and dnaN known to cause thermosensitivity of the various subunits of DNA polymerase III. When the lagging strand origin (oriL) is exposed, the DnaG protein (DNA primase) alone, or in association with unknown protein(s) binds asymmetrically to oriL to form a primer that is also extended by DNA polymerase III. In oriL - plasmids like pBT32, leading and lagging strand DNA syntheses are decoupled from each other. The DnaB protein, that is not required for pUB110 replication, may be associated with priming at a second unidentified lagging strand origin on pBT32. At non-permissive temperature, the dnaC30 and dnaI2 mutations affect both pUB110 and chromosomal DNA synthesis.  相似文献   

10.
11.
我们在质粒puB110的基础上组建了pDR质粒,它们具有双复制起始区而只有一个抗卡那霉素基因。携带了这些质粒的宿主细胞对卡那霉素的抗性明显高于亲本株(B,subtilis 150(puB110))。经限制性酶切图谱分析新获得的转化株具有二个复制起始区及一个 Km&4基因。说明增加复制起始区是提高重组子表达能力的途径之一。  相似文献   

12.
The herpes simplex virus type 1 genome contains three origins of DNA replication: two copies of oriS and one copy of oriL. Although oriS has been characterized extensively, characterization of oriL has been severely limited by the inability to amplify oriL sequences in an undeleted form in Escherichia coli. We report the successful cloning of intact oriL sequences in an E. coli strain, SURE, which contains mutations in a series of genes involved in independent DNA repair pathways shown to be important in the rearrangement and deletion of DNA containing irregular structures such as palindromes. The oriL-containing clones propagated in SURE cells contained no deletions, as determined by Southern blot hybridization and DNA sequence analysis, and were replication competent in transient DNA replication assays. Deletion of 400 bp of flanking sequences decreased the replication efficiency of oriL twofold in transient assays, demonstrating a role for flanking sequences in enhancing replication efficiency. Comparison of the replication efficiencies of an 822-bp oriS-containing plasmid and an 833-bp oriL-containing plasmid demonstrated that the kinetics of replication of the two plasmids were similar but that the oriL-containing plasmid replicated 60 to 70% as efficiently as the oriS-containing plasmid at both early and late times after infection with herpes simplex virus type 1. The virus-specified origin-binding protein (OBP) and a cellular factor(s) (OF-1) have been shown in gel mobility shift experiments to bind specific sequences in oriS (C.E. Dabrowski, P. Carmillo, and P.A. Schaffer, Mol. Cell. Biol. 14:2545-2555, 1994; C.E. Dabrowski and P.A. Schaffer, J. Virol. 65:3140-3150, 1991). Although the nucleotides required for the binding of OBP to OBP binding site I in oriL and oriS are the same, a single nucleotide difference distinguishes OBP binding site III in the two origins. The nucleotides adjacent to oriS sites I and III have been shown to be important for the binding of OF-1 to oriS site I. Several nucleotide differences exist in these sequences in oriL and oriS. Despite these minor nucleotide differences, the protein-DNA complexes that formed with oriL and oriS sites I and III were indistinguishable when extracts of infected and uninfected cells were used as the source of protein. Furthermore, the results of competition analysis suggest that the proteins involved in protein-DNA complex formation with sites I and III of the two origins are likely the same.  相似文献   

13.
The recombinant vector plasmids were constructed having the DNA of pUB110 plasmid (4,5 kb, KmR) from Staphylococcus aureus inserted into the cryptic plasmids pANS (8 Kb) and pANL (48,5 kb) of cyanobacterium Anacystis nidulans R2. The hybrid plasmids transform cyanobacterial cells to Km-resistance with high efficiency. The plasmid pBS20, containing the complete sequence of pANS and pUB110 DNA, transforms Bacillus subtilis rec E4 protoplasts being, however, unstable in bacilli cells and disintegrates deriving a parent pUB110 plasmid.  相似文献   

14.
E C Becker  H Zhou    R J Meyer 《Journal of bacteriology》1996,178(16):4870-4876
The origin of replication of the plasmid R1162 contains an initiation site for the synthesis of each DNA strand. When one of these sites (oriL) is deleted, synthesis on the corresponding strand is no longer initiated efficiently in vitro by the R1162-encoded replication proteins, and the plasmid is no longer stably maintained in the cell. However, in vivo the two strands of the plasmid duplex molecule are active at a similar level as templates for DNA synthesis, and newly synthesized copies of each strand are incorporated into daughter molecules at a similar rate. No secondary, strong initiation sites on the delta oriL strand were detected in the region of the origin. The delta oriL plasmid induces the SOS response, and this is important for plasmid maintenance even in a recombination-proficient strain. Our results indicate that an SOS-induced host system can maintain an R1162 derivative lacking one of its initiation sites.  相似文献   

15.
Different cryptic plasmids are widely distributed in many strains of cyanobacteria. A small cryptic plasmid, pCA2.4, from Synechocystis strain PCC 6803 was completely sequenced, and its replication mode was determined. pCA2.4 contained 2,378 bp and encoded a replication (Rep) protein, designated RepA. An analysis of the deduced amino acid sequence revealed that RepA of pCA2.4 has significant homology with Rep proteins of pKYM from Shigella sonnei, a pUB110 plasmid family from gram-positive bacteria, and with a protein corresponding to an open reading frame in a Nostoc plasmid and open reading frame C of Plectonema plasmid pRF1. pKYM and pUB110 family plasmids replicate by a rolling circle mechanism in which a Rep protein nicks the origin of replication to allow the generation of a single-stranded plasmid as a replication intermediate. RepA encoded by pC2.4 was expressed in Escherichia coli cells harboring a vector, pCRP336, containing the entire repA gene. The observed molecular weight of RepA was consistent with the value of 39,200 calculated from its deduced amino acid sequence, as was the N-terminal sequence analysis done through the 12th residue. Single-stranded plasmid DNA of pCA2.4 that was specifically degraded by S1 nuclease was detected in Synechocystis cells by Southern hybridization. These observations suggest that pCA2.4 replicates by a rolling circle mechanism in Synechocystis cells.  相似文献   

16.
17.
Abstract The discrepancy between previously reported copy numbers for the plasmid pUB110 in Bacillus subtilis and the copy number determined by nucleic acid sandwich hybridization of a pUB110-derivative, pKTH10, was studied. The bulk of plasmid DNA was found to be enriched in the cell membranes in a non-covalently closed circular (ccc) form. The binding was strong enough to resist standard solubilization procedures. The conventional methods for copy number determination fail to detect plasmid DNA in this form, which explains the discrepancy we encountered. The copy number of the parental plasmid, pUB110, was also determined by the sandwich hybridization method and found to be of the same order of magnitude as that of pKTH10.  相似文献   

18.
Sierd Bron  Erik Luxen  Piet Swart 《Plasmid》1988,19(3):231-241
Two series of pUB110-derived plasmids were constructed to study segregational stability in Bacillus subtilis. pEB plasmids were based on the entire pUB110, whereas pLB plasmids lack the membrane-binding areas BA3 and BA4. Two kinds of stability defects were observed. The first was characterized by a strong size dependency and occurred with different inserts at various positions in pLB and pEB plasmids. Size-dependent reductions in plasmid copy numbers appeared to underly this phenomenon. This may render pUB110 unsuitable for the cloning of inserts larger than about 3 kb, in particular if no selective conditions can be applied. The second defect, observed with pLB plasmids, was caused by the absence of the membrane-binding areas BA3 and BA4. Deletion of BA3 resulted in the accumulation of single-stranded plasmid DNA, suggesting that BA3 contains the initiation signal for complementary strand synthesis. The BA3 region is very rich in hyphenated dyad symmetry which, in single-stranded DNA, could result in several stable alternative secondary structures. It is speculated that the activity of the BA3-associated initiation signal contributes to the segregational stability of pUB110-derived plasmids in B. subtilis. The absence of the BA3 stability function could not account for all stability defects observed. Additional stability functions seemed to be located on the BA4 fragment.  相似文献   

19.
Plasmid pSL103 was previously constructed by cloning a Trp fragment (approximately 2.3 X 10(6) daltons) from restriction endonuclease EcoRI-digested chromosome DNA of Bacillus pumilus using the neomycin-resistance plasmid pUB110 (approximately 2.8 X 10(6) daltons) as vector and B. subtilis as transformation recipient. In the present study the EcoRI Trp fragment from pSL103 was transferred in vitro to EcoRI fragments of the Bacillus plasmid pPL576 to determine the ability of the plasmid fragments to replicate in B. subtilis. Endonuclease EcoRI digestion of pPL576 (approximately 28 X 10(6) daltons) generated three fragments having molecular weights of about 13 X 13(6) (the A fragment), 9.5 X 10(6) (B fragment, and 6.5 X 10(6) (C fragment). Trp derivatives of pPL576 fragments capable of autonomous replication in B. subtilis contained the B fragment (e.g., pSL107) or both the B and C fragments (e.g., pSL108). Accordingly, the B fragment of pPL576 contains information essential for autonomous replication. pSL107 and pSL108 are compatible with pUB110. Constructed derivatives of the compatible plasmids pPL576 and pUB110, harboring genetically distinguishable EcoRI-generated Trp fragments cloned from the DNA of a B. pumilus strain, exhibited relatively high frequency recombination for a trpC marker when the plasmid pairs were present in a recombination-proficient strain of B. subtilis. No recombination was detected when the host carried the chromosome mutation recE4. Therefore, the recE4 mutation suppresses recombination between compatible plasmids that contain homologous segments.  相似文献   

20.
Construction of a vector for cloning promoters in Bacillus subtilis   总被引:10,自引:0,他引:10  
L Band  D G Yansura  D J Henner 《Gene》1983,26(2-3):313-315
A versatile vector for cloning DNA fragments containing promoter activity in Bacillus subtilis was derived from plasmids pBR322, pUB110 and pC194. Selection is based on chloramphenicol resistance which is dependent upon the introduction of DNA fragments allowing expression of a chloramphenicol acetyl transferase gene. The plasmid contains a second selectable marker, neomycin resistance, and contains functional origins of replication for both B. subtilis and Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号