首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
An intestine-specific gene regulatory region was previously identified near the second exon of the human adenosine deaminase (ADA) gene. In mammalian intestine, ADA is expressed at high levels only along the villi of the duodenal epithelium, principally if not exclusively in enterocytes. Within the ADA intestinal regulatory region, a potent duodenum-specific enhancer was identified that controls this pattern of expression. This enhancer has been shown to rely on PDX-1, GATA factors, and Cdx factors for its function. Upstream of the enhancer, a separate temporal regulatory region was identified that has no independent enhancer capability but controls the timing of enhancer activation. DNase I footprinting and electrophoretic mobility shift assays were used to begin to characterize temporal region function at the molecular level. In this manner, binding sites for the Onecut (OC) family of factors, YY1, and NFI family members were identified. Identification of the OC site was especially interesting, because almost nothing is known about the function of OC factors in intestine. In transgenic mice, mutation of the OC site to ablate binding resulted in a delay of 2-3 weeks in enhancer activation in the developing postnatal intestine, a result very similar to that observed previously when the entire temporal region was deleted. In mammals, the OC family is comprised of OC-1/HNF-6, OC-2, and OC-3. An examination of intestinal expression patterns showed that all three OC factors are expressed at detectable levels in adult mouse duodenum, with OC-2 predominant. In postnatal day 2 mice only OC-2 and OC-3 were detected in intestine, with OC-2 again predominant.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
We are investigating induction of chicken cytochrome P450 genes by the sedative phenobarbital in chick embryo hepatocytes. The steady-state level of induced mRNA for the gene CYP2H1 is about 10-fold higher than that of a second gene, CYP2H2. Here, we show that a difference in drug-responsive enhancer activity does not underlie the differential response of these genes to phenobarbital since upstream enhancer regions are identical in these genes. The first 198 bp of CYP2H2 promoter sequence is identical to the CYP2H1 gene promoter, except that the functional HNF-3 binding site in the CYP2H1 promoter is replaced with a duplicated HNF-3 sequence in the CYP2H2 promoter. Transient expression analysis established that the promoter activity of the CYP2H2 gene was about ninefold lower than the CYP2H1 gene. Mutagenesis of either of the partially overlapping HNF-3 sites in the CYP2H2 gene substantially induced drug induction. Gel-shift analysis established that each of these HNF-3 sites bound HNF-3, most likely HNF-3beta. In-vitro footprint analysis demonstrated that all the identified sites in the CYP2H2 promoter bound protein except the duplicated HNF-3 region. However, protein binding was observed by in-vitro footprint analysis if either of the HNF-3 sites was mutated in the CYP2H2 promoter. Hence, duplication of the HNF-3 site in the CYP2H2 promoter does not allow binding of HNF-3 in the promoter context and may be predominantly, if not exclusively, responsible for the poor response of the CYP2H2 gene to phenobarbital.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号