首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synovial fluid basic calcium phosphate (BCP) crystals are common in osteoarthritis and are associated with severe degenerative arthropathy. Besides stimulating synovial fibroblast-like cells to proliferate, BCP crystals are a potent inducer of human matrix metalloproteinases (hMMPs), which can speed up the articular joint tissue degeneration of osteoarthritis patients. Here, we report that transfections with hMMP1 luciferase reporter plasmids in fibroblast-like synoviocytes revealed that the induction of hMMP1 promoter by BCP crystals was mainly mediated through the -72AP-1 element. Elimination of the -72AP-1 element either by mutation or deletion abolished the induction of hMMP1 promoter activity by BCP crystals almost completely. Interestingly, a mutation at the -88PEA-3 site also abolished the induction of hMMP1 promoter. Further mutation at the -181AP-1 site resumed the induction, indicating that the -181AP-1 element had an effect opposite to the -72AP-1 element. The effect of -181AP-1 could be inactivated either by a mutation at this -181AP-1 site or by the -88PEA-3 element. In addition, dominant negative Ras, Raf, and MEK1/2 could block the induction of hMMP1, and a MEK1/2-specific inhibitor (UO126) could block the induction of hMMP1 and c-Fos by BCP crystals. Taken together, these data indicate that multiple elements, including at least AP-1 and PEA-3, are involved in the induction of hMMP1 gene expression by BCP crystals and that the induction follows the Ras/MAPK/c-Fos/AP-1/MMP1 signaling pathway.  相似文献   

2.
3.
4.
The multiple isoforms of PDGF induce fibroblastic mitogenesis through two distinct PDGF receptors, alpha and beta. The molecular mechanisms by which these alpha and beta PDGF receptors regulate gene expression are poorly understood. We present data which indicates that differential induction of c-fos gene expression by PDGF isoforms occurs through distinct PDGF alpha and beta receptor-mediated signaling pathways. Comparison of PDGF-AA with PDGF-BB stimulation showed that PDGF-BB induced prolonged expression of the c-fos gene in BALB/c-3T3 cells, but that PDGF-AA induced more potent activation of the serum response element (SRE) in transient transfection assays. PDGF-AA, which binds alpha but not beta PDGF receptors, could only induce the SRE through a protein kinase C (PKC)-dependent pathway, whereas PDGF-BB, which binds both alpha and beta PDGF receptors, could also induce the SRE through a PKC-independent pathway. These results suggest that PDGF alpha receptors activate the PKC-dependent signaling pathway while PDGF beta receptors also activate a PKC-independent pathway. In addition, we found that PDGF-BB could induce another c-fos promoter element within the -90 to +10 region, suggesting that the more potent mitogenic effect and prolonged c-fos gene expression induced by PDGF-BB may result from cooperativity between more than one c-fos promoter elements.  相似文献   

5.
6.
7.
8.
9.
10.
TPA is known to cooperate with an activated Ras oncogene in the transformation of rodent fibroblasts, but the biochemical mechanisms responsible for this effect have not been established. In the present study we used c-fos promoter-luciferase constructs as reporters, in transient transfection assays, in NIH3T3 cells to assess the mechanism of this cooperation. We found a marked synergistic interaction between TPA and a transfected v-Ha-ras oncogene in the activation of c-fos promoter and SRE. SRE has binding sites for TCF and SRF. A dominant-negative Ras (ras-N17) inhibited the TPA-Ras synergy by blocking the PKC-MAPK-TCF pathway. Dominant-negative RhoA and Rac1 (but not Cdc42Hs) inhibited the TPA-Ras synergy by blocking the Ras-Rho-SRF signaling pathway. Constitutively active PKCalpha and PKCepsilon showed synergy with v-Ras. These results suggest that the activation of two distinct pathways such as Ras-Raf-ERK-TCF pathway and Rho-SRF pathway are responsible for the induction of c-fos by TPA and Ras in mitogenic signaling pathways.  相似文献   

11.
Extracellular signal-Regulated Kinase (ERK) controls a variety of cellular processes, including cell proliferation and cell motility. While oncogenic mutations in Ras and B-Raf result in deregulated ERK activity and proliferation and migration in some tumor cells, other tumors exhibit elevated ERK signaling in the absence of these mutations. Here we provide evidence that PAK can directly activate MEK1 by a mechanism distinct from conventional Ras/Raf mediated activation. We find that PAK phosphorylation of MEK1 serine 298 stimulates MEK1 autophosphorylation on the activation loop, and activation of MEK1 activity towards ERK in in vitro reconstitution experiments. Serines 218 and/or 222 in the MEK1 activation loop are required for PAK-stimulated MEK1 activity towards ERK. MEK2, which is a poor target for PAK phosphorylation in cells, is not activated in this manner. Tissue culture experiments verify that this mechanism is used in suspended fibroblasts expressing mutationally activated PAK1. We speculate that aberrant signaling through PAK may directly induce anchorage-independent MEK1 activation in tumor cells lacking oncogenic Ras or Raf mutations, and that this mechanism may contribute to localized MEK signaling in focal contacts and adhesions during cell adhesion or migration.  相似文献   

12.
Activation of Ras signaling by growth factors has been associated with gene regulation and cell proliferation. Here we characterize the contributory role of cytosolic phospholipase A(2) in the oncogenic Ha-Ras(V12) signaling pathway leading to activation of c-fos serum response element (SRE) and transformation in Rat-2 fibroblasts. Using a c-fos SRE-luciferase reporter gene, we showed that the transactivation of SRE by Ha-Ras(V12) is mainly via a Rac-linked cascade, although the Raf-mitogen-activated protein kinase cascade is required for full activation. In addition, Ha-Ras(V12)-induced DNA synthesis was significantly attenuated by microinjection of recombinant Rac(N17), a dominant negative mutant of Rac1. To identify the mediators downstream of Rac in the Ha-Ras(V12) signaling, we investigated the involvement of cytosolic phospholipase A(2). Oncogenic Ha-Ras(V12)-induced SRE activation was significantly inhibited by either pretreatment with mepacrine, a phospholipase A(2) inhibitor, or cotransfection with the antisense oligonucleotide of cytosolic phospholipase A(2). We also found cytosolic phospholipase A(2) to be situated downstream of Ha-Ras(V12) in a signal pathway leading to transformation. Together, these results are indicative of mediatory roles of Rac and cytosolic phospholipase A(2) in the signaling pathway by which Ha-Ras(V12) transactivates c-fos SRE and transformation. Our findings point to cytosolic phospholipase A(2) as a novel potential target for suppressing oncogenic Ha-Ras(V12) signaling in the cell.  相似文献   

13.
14.
15.
16.
17.
Synovial fluid basic calcium phosphate (BCP) crystals are associated with severe destructive arthropathies characterised by synovial proliferation and non-inflammatory degradation of intra-articular collagenous structures. BCP crystals stimulate fibroblast and chondrocyte mitogenesis, metalloprotease secretion and prostaglandin production. As a tissue protective effect of prostaglandins has been suggested, we recently studied the effect of PGE1 on BCP crystal-induced mitogenesis and collagenase mRNA accumulation in human fibroblasts (HF). We demonstrated a dose-dependent inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation. The mechanism of PGE1 inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation was therefore explored. PGE1 (100 ng/ml) increased HF intracellular cAMP 40-fold over control. BCP alone caused no such change but inhibited the PGE1-induced increase in intracellular cAMP by at least 60%. The PGE1-induced increase in intracellular cAMP was also blocked by the adenyl cyclase inhibitor, 2′,5′-dideoxyadenosine (ddA) (10 μM) and ddA reversed the PGE1-mediated inhibition of BCP crystal-induced mitogenesis. Dibutyrul cAMP also inhibited BCP crystal-induced mitogenesis in a concentration-dependent manner. Agents which increase intracellular cAMP levels such as the adenyl cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) mimicked the effect of PGE1 on HF collagenase mRNA levels. PGE1 inhibits the biologic effects of BCP crystals through the cAMP signal transduction pathway and such inhibition may have significant therapeutic implications.  相似文献   

18.
Synovial fluid basic calcium phosphate crystals (BCP) are often found in severely degenerated joints. Crystalline BCP is a growth factor stimulating fibroblast mitogenesis and acting as a competence factor similar to platelet-derived growth factor. In human fibroblasts (HF), the synthesis of collagenase and stromelysin is coordinately induced after stimulation with a variety of cytokines and growth factors. We sought to determine whether BCP, like other growth factors, might induce proteases that would damage articular tissue. Northern blot analysis of mRNA for collagenase and stromelysin in HF stimulated with BCP was performed. Secreted enzymes were analyzed by immunoblot using a monoclonal antibody to collagenase and by immunoprecipitation using a polyclonal antibody to stromelysin. Stromelysin activity was confirmed using casein substrate gels. A significant, dose-dependent accumulation of collagenase and stromelysin message was evident after 4 h and continued for at least 24 h in BCP-stimulated cultures. Forty-nine and 54 kD proteins immunoreacting with collagenase antibody were identified in the conditioned media (CM) from BCP-stimulated cultures while 50 and 55 kD proteins were identified by immunoprecipitation with stromelysin antibody. Collagenase activity was increased significantly in the CM from BCP treated cells; casein substrate gels showed casein degrading bands at molecular weights consistent with stromelysin. BCP stimulates coordinate induction of collagenase and stromelysin which may mediate the joint destruction associated with these crystals.  相似文献   

19.
20.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to signal through a multicomponent receptor complex consisting of the Ret receptor tyrosine kinase and a member of the GFRalpha family of glycosylphosphatidylinositol-anchored receptors. In the current model of GDNF signaling, Ret delivers the intracellular signal but cannot bind ligand on its own, while GFRalphas bind ligand but are thought not to signal in the absence of Ret. We have compared signaling pathways activated by GDNF in two neuronal cell lines expressing different complements of GDNF receptors. In a motorneuron-derived cell line expressing Ret and GFRalphas, GDNF stimulated sustained activation of the Ras/ERK and phosphatidylinositol 3-kinase/Akt pathways, cAMP response element-binding protein phosphorylation, and increased c-fos expression. Unexpectedly, GDNF also promoted biochemical and biological responses in a line of conditionally immortalized neuronal precursors that express high levels of GFRalphas but not Ret. GDNF treatment did not activate the Ras/ERK pathway in these cells, but stimulated a GFRalpha1-associated Src-like kinase activity in detergent-insoluble membrane compartments, rapid phosphorylation of cAMP response element-binding protein, up-regulation of c-fos mRNA, and cell survival. Together, these results offer new insights into the dynamics of GDNF signaling in neuronal cells, and indicate the existence of novel signaling mechanisms directly or indirectly mediated by GFRalpha receptors acting in a cell-autonomous manner independently of Ret.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号