首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale genotyping of complex DNA   总被引:21,自引:0,他引:21  
Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.  相似文献   

2.
Single nucleotide polymorphism (SNP) genotyping is playing an increasing role in genome mapping, pharmacogenetic studies, and drug discovery. To date, genome-wide scans and studies involving thousands of SNPs and samples have been hampered by the lack of a system that can perform genotyping with cost-effective throughput, accuracy, and reliability. To address this need, Orrhid has developed an automated, ultra-high throughput system, SNPstream UHT, which uses multiplexed PCR in conjunction with our next generation SNP-IT tag array single base extension genotyping technology The system employs oligonucleotide microarrays manufactured in a 384-well format on a novel glass-bottomed plate. Multiplexed PCR and genotyping are performed in homogeneous reactions, and assay results are read by direct two-color fluorescence on the SNPstream UHTArray Imager. The systems flexibility enables large projects involving thousands of SNPs and thousands of samples as well as small projects that have hundreds of SNPs and hundreds of samples to be done cost effectively. We have successfully demonstrated this system in greater than 1,000,000 genotyping assays with >96% of samples giving genotypes with >99% accuracy  相似文献   

3.
The genetic etiology of most cancers remains largely unclear and it has been hypothesised that common genetic variants with modest effects on disease susceptibility cause the bulk of this unexplained risk. Case-control association studies are considered the most effective strategy to identify these low-penetrance genes. While traditionally, such studies have focused on putative functional single nucleotide polymorphisms (SNPs) in candidate genes, a more comprehensive approach can now be taken, as a result of a number of recent developments: the mapping of the human genome, including the identification of almost ten million SNPs; and the development of high-throughput genotyping technologies that enable hundreds of thousands of SNPs to be genotyped in a single reaction, in multiple subjects and at an affordable cost. All common genomic variation can be captured by genotyping SNPs in gene-, pathway- or genome-wide-based strategies and these are now being applied to many diseases, including cancer. We present an outline of each of these approaches, including recent published examples, and discuss a number of challenges that remain to be addressed.  相似文献   

4.
The ability to simultaneously genotype hundreds of thousands of single-nucleotide polymorphisms (SNPs) in a single assay has recently become feasible due to innovative combinations of assay and array platform multiplexing. In this review, we describe the development of the Infinium whole genome genotyping technology and the BeadArray platform. We discuss the automated use and performance of a series of genotyping BeadChips, including data quality, technology scalability, and flexibility in designing array content. We describe high-density tag SNP-based Bead-Chips and various multi-sample BeadChip configurations with their respective applications. These technologies are enabling large-scale whole genome association studies that have the potential to revolutionize our ability to detect common genetic variants with a significant role in identifying disease-associated loci, proteins, biomarkers, and pharmacogenomic responses.  相似文献   

5.
SNPselector: a web tool for selecting SNPs for genetic association studies   总被引:7,自引:0,他引:7  
SUMMARY: Single nucleotide polymorphisms (SNPs) are commonly used for association studies to find genes responsible for complex genetic diseases. With the recent advance of SNP technology, researchers are able to assay thousands of SNPs in a single experiment. But the process of manually choosing thousands of genotyping SNPs for tens or hundreds of genes is time consuming. We have developed a web-based program, SNPselector, to automate the process. SNPselector takes a list of gene names or a list of genomic regions as input and searches the Ensembl genes or genomic regions for available SNPs. It prioritizes these SNPs on their tagging for linkage disequilibrium, SNP allele frequencies and source, function, regulatory potential and repeat status. SNPselector outputs result in compressed Excel spreadsheet files for review by the user. AVAILABILITY: SNPselector is freely available at http://primer.duhs.duke.edu/  相似文献   

6.
Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many thousands of SNPs at many different loci in a given plant genome. For a number of important crop plants, SNP markers are now being used to design genotyping arrays containing thousands of markers spread over the entire genome and to analyse large numbers of samples. In this article, we discuss aspects that should be considered during the design of such large genotyping arrays and the analysis of individuals. The fact that crop plants are also often autopolyploid or allopolyploid is given due consideration. Furthermore, we outline some potential applications of large genotyping arrays including high-density genetic mapping, characterization (fingerprinting) of genetic material and breeding-related aspects such as association studies and genomic selection.  相似文献   

7.

Background

Sustainable DNA resources and reliable high-throughput genotyping methods are required for large-scale, long-term genetic association studies. In the genetic dissection of common disease it is now recognised that thousands of samples and hundreds of thousands of markers, mostly single nucleotide polymorphisms (SNPs), will have to be analysed. In order to achieve these aims, both an ability to boost quantities of archived DNA and to genotype at low costs are highly desirable. We have investigated Φ29 polymerase Multiple Displacement Amplification (MDA)-generated DNA product (MDA product), in combination with highly multiplexed BeadArray? genotyping technology. As part of a large-scale BeadArray genotyping experiment we made a direct comparison of genotyping data generated from MDA product with that from genomic DNA (gDNA) templates.

Results

Eighty-six MDA product and the corresponding 86 gDNA samples were genotyped at 345 SNPs and a concordance rate of 98.8% was achieved. The BeadArray sample exclusion rate, blind to sample type, was 10.5% for MDA product compared to 5.8% for gDNA.

Conclusions

We conclude that the BeadArray technology successfully produces high quality genotyping data from MDA product. The combination of these technologies improves the feasibility and efficiency of mapping common disease susceptibility genes despite limited stocks of gDNA samples.  相似文献   

8.
MOTIVATION: The technology to genotype single nucleotide polymorphisms (SNPs) at extremely high densities provides for hypothesis-free genome-wide scans for common polymorphisms associated with complex disease. However, we find that some errors introduced by commonly employed genotyping algorithms may lead to inflation of false associations between markers and phenotype. RESULTS: We have developed a novel SNP genotype calling program, SNiPer-High Density (SNiPer-HD), for highly accurate genotype calling across hundreds of thousands of SNPs. The program employs an expectation-maximization (EM) algorithm with parameters based on a training sample set. The algorithm choice allows for highly accurate genotyping for most SNPs. Also, we introduce a quality control metric for each assayed SNP, such that poor-behaving SNPs can be filtered using a metric correlating to genotype class separation in the calling algorithm. SNiPer-HD is superior to the standard dynamic modeling algorithm and is complementary and non-redundant to other algorithms, such as BRLMM. Implementing multiple algorithms together may provide highly accurate genotyping calls, without inflation of false positives due to systematically miss-called SNPs. A reliable and accurate set of SNP genotypes for increasingly dense panels will eliminate some false association signals and false negative signals, allowing for rapid identification of disease susceptibility loci for complex traits. AVAILABILITY: SNiPer-HD is available at TGen's website: http://www.tgen.org/neurogenomics/data.  相似文献   

9.
High‐throughput high‐density genotyping arrays continue to be a fast, accurate, and cost‐effective method for genotyping thousands of polymorphisms in high numbers of individuals. Here, we have developed a new high‐density SNP genotyping array (103,270 SNPs) for honey bees, one of the most ecologically and economically important pollinators worldwide. SNPs were detected by conducting whole‐genome resequencing of 61 honey bee drones (haploid males) from throughout Europe. Selection of SNPs for the chip was done in multiple steps using several criteria. The majority of SNPs were selected based on their location within known candidate regions or genes underlying a range of honey bee traits, including hygienic behavior against pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic behavior against the major honey bee parasite Varroa destructor were brought over. The chip also includes SNPs associated with each of three major breeding objectives—honey yield, gentleness, and Varroa resistance. We validated the chip and make recommendations for its use by determining error rates in repeat genotypings, examining the genotyping performance of different tissues, and by testing how well different sample types represent the queen's genotype. The latter is a key test because it is highly beneficial to be able to determine the queen's genotype by nonlethal means. The array is now publicly available and we suggest it will be a useful tool in genomic selection and honey bee breeding, as well as for GWAS of different traits, and for population genomic, adaptation, and conservation questions.  相似文献   

10.
Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase.  相似文献   

11.
12.
13.
SNP(single nucleotide polymorphism,单核苷酸多态)在猪基因组中的分布极其广泛,平均分布间隔为300~400 bp,相关数据库收录已达55万条。猪基因组测序已取得实质性进展,大规模搜索发现基因组及EST(expressed sequence tag)序列中的SNP已展开,应用于猪全基因组水平的SNP芯片已建立。在此基础上,基于猪SNP标记的遗传图谱绘制、QTL(quantitative trait loci)定位、遗传多样性检测及全基因组关联分析等也都相继出现。  相似文献   

14.
Algorithms for large-scale genotyping microarrays   总被引:7,自引:0,他引:7  
MOTIVATION: Analysis of many thousands of single nucleotide polymorphisms (SNPs) across whole genome is crucial to efficiently map disease genes and understanding susceptibility to diseases, drug efficacy and side effects for different populations and individuals. High density oligonucleotide microarrays provide the possibility for such analysis with reasonable cost. Such analysis requires accurate, reliable methods for feature extraction, classification, statistical modeling and filtering. RESULTS: We propose the modified partitioning around medoids as a classification method for relative allele signals. We use the average silhouette width, separation and other quantities as quality measures for genotyping classification. We form robust statistical models based on the classification results and use these models to make genotype calls and calculate quality measures of calls. We apply our algorithms to several different genotyping microarrays. We use reference types, informative Mendelian relationship in families, and leave-one-out cross validation to verify our results. The concordance rates with the single base extension reference types are 99.36% for the SNPs on autosomes and 99.64% for the SNPs on sex chromosomes. The concordance of the leave-one-out test is over 99.5% and is 99.9% higher for AA, AB and BB cells. We also provide a method to determine the gender of a sample based on the heterozygous call rate of SNPs on the X chromosome. See http://www.affymetrix.com for further information. The microarray data will also be available from the Affymetrix web site. AVAILABILITY: The algorithms will be available commercially in the Affymetrix software package.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild.  相似文献   

17.
Xiao M  Latif SM  Kwok PY 《BioTechniques》2003,34(1):190-197
Strategies for identifying genetic risk factors in complex diseases by association studies require the comparison of allele frequencies of numerous SNPs between affected and control populations. Theoretically, hundreds of thousands of SNP markers across the genome will have to be genotyped in these studies. Genotyping SNPs one sample at a time is extremely costly and time consuming. To streamline whole genome association studies, some have proposed to screen SNPs by pooling the DNA samples initially for allele frequency determination and perform individual genotyping only when there is a significant discrepancy in allele frequencies between the affected and control populations. Here we describe a new method for determining the allele frequency of SNPs in pooled DNA samples using a two-color primer extension assay with real-time monitoring of fluorescence polarization (named kinetic FP-TDI assay). By comparing the ratio of the rate of incorporation of the two allele-specific dye-terminators, one can calculate the relative amounts of each allele in the pooled sample. The accuracy of allele frequency determination with pooled samples is within 3.3 +/- 0.8% of that determined by genotyping individual samples that make up the pool.  相似文献   

18.

Background  

The risk of common diseases is likely determined by the complex interplay between environmental and genetic factors, including single nucleotide polymorphisms (SNPs). Traditional methods of data analysis are poorly suited for detecting complex interactions due to sparseness of data in high dimensions, which often occurs when data are available for a large number of SNPs for a relatively small number of samples. Validation of associations observed using multiple methods should be implemented to minimize likelihood of false-positive associations. Moreover, high-throughput genotyping methods allow investigators to genotype thousands of SNPs at one time. Investigating associations for each individual SNP or interactions between SNPs using traditional approaches is inefficient and prone to false positives.  相似文献   

19.

Background  

With the advent of cost-effective genotyping technologies, genome-wide association studies allow researchers to examine hundreds of thousands of single nucleotide polymorphisms (SNPs) for association with human disease. Recently, many researchers applying this strategy have detected strong associations to disease with SNP markers that are either not in linkage disequilibrium with any nonsynonymous SNP or large distances from any annotated gene. In such cases, no well-established standard practice for effective SNP selection for follow-up studies exists. We aim to identify and prioritize groups of SNPs that are more likely to affect phenotypes in order to facilitate efficient SNP selection for follow-up studies.  相似文献   

20.
为了考察飞行时间质谱基因分型方法 (MALDI-TOF) 的位点分型成功率和分型结果质量的关系,分析了 96 个 SNPs 位点的近 10 000 个基因分型数据 (用 MALDI-TOF “4 重”实验方法检测 ). 结果显示,位点分型成功率和分型结果的质量显著正相关 . 分型成功率低于 82% 的 SNP 位点,其高质量结果占的比例开始逐渐降低 . 提示 82% 的分型成功率可以作为衡量分型结果质量的数据点 . 为了进一步提高通量并降低成本,在 MALDI-TOF “ 4 重”实验方法的基础上,发展了两种“准 8 重”实验方法 . 用新的实验方法检测了 95 个样本的 32 个 SNPs 位点 . 结果显示“混合准 8 重”实验方法与“ 4 重”实验方法相比无显著差异,而“复点准 8 重”的结果差于“ 4 重”分型方法 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号