首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is believed that Nef-mediated HLA class I down-regulation is one of the mechanisms that allow HIV-1-infected cells to escape from being killed by HIV-1-specific human CTLs. In this study, we show that the effect of Nef-mediated HLA class I down-regulation on the ability of HIV-1-specific CTLs to suppress HIV-1 replication is epitope dependent. The CTLs specific for two Pol epitopes presented by HLA-B*5101, one of the HLA alleles associated with slow progression to AIDS, effectively killed HIV-1-infected CD4+ T cells and suppressed HIV-1 replication. In contrast, those specific for the other four epitopes failed to kill HIV-1-infected CD4+ T cells and partially or hardly suppressed HIV-1 replication. The difference of the ability between these two types of CTLs may result from the difference of the number of HLA class I epitope complex on the surface of NL-432-infected CD4+ T cells.  相似文献   

2.
Hepatitis B virus core antigen (HBcAg) plays a critical role in terminating acute Hepatitis B virus infection and may be used as a potential vaccine candidate. The cell surface major histocompatibility complex (MHC) class 1 molecules are thought to be involved in the presentation of HBcAg. Surface MHC class 1 HLA A2 heavy chain (HC) and trimeric molecules were characterized on transfected Hela cells used as antigen presenting cells (APC) for the presentation of HBcAg. The results show that antibodies against HC HLA A2 and trimeric HLA-A2 molecules resulted in increased activation of HBcAg 18-27 minimal peptide specific cytotoxic T lymphocytes (CTLs), while the addition of exogenous beta2-microglobulin decreased the activation of HBcAg specific CTLs. Further, specific CD8+ T cells were activated only when Hela cells as APCs were primed with HBcAg (peptide, soluble or embedded on virosomes) at pH 6.5.  相似文献   

3.
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy.  相似文献   

4.
A fusion protein of single chain antibody (scFv) specific for transferrin receptor (TfR, CD71) and viral peptide/HLA-A2 complex was prepared in this study to redirect cytotoxic T cells (CTLs) of viral specificity to tumor cells by attaching the ligand of T cell receptor (TCR) to tumor cells via binding of TfR scFv to TfR. The results demonstrate that the fusion protein can attach the active virus-peptide/HLA-A2 complex to HLA class I-negative, TfR-expressing K562 cells through binding of TfR scFv to TfR, and mediate cytotoxicity of viral peptide-specific CTLs against K562 cells in vitro. In addition, the fusion protein can induce inhibition of solid tumor formation and improve survival time in tumor xenograft nude mouse with the injection of the sorted viral peptide-specific CTLs generated by co-culture of peripheral blood lymphocytes from HLA-A2 positive donors with inactivated T2 cells pulsed with the viral peptide.  相似文献   

5.
Treatment of invasive adenovirus (Ad) disease in hematopoietic stem cell transplant (SCT) recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs) targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977) and late protein hexon (H-892) were compared in peripheral blood (PB) and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-γ and IL-2 but not perforin or TNF-α, whereas PB T cells were positive for IFN-γ, TNF-α, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-γ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16-24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-γ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients.  相似文献   

6.
Previous studies have identified murine and human regulatory CD8+ T cells specific for TCR-Vbeta families expressed on autologous activated CD4+ T cells. In the mouse, these regulatory CD8+ T cells were shown to be restricted by the MHC class Ib molecule, Qa-1. In the present study, we asked whether HLA-E, the human functional equivalent of Qa-1, binds Vbeta peptides and whether the HLA-E/Vbeta-peptide complex induces and restricts human CD8+ CTLs. We first created stable HLA-E gene transfectants of the C1R cell line (C1R-E). Two putative HLA-E binding nonapeptides identified in human TCR Vbeta1 and Vbeta2 chains (SLELGDSAL and LLLGPGSGL, respectively) were shown to bind to HLA-E. CD8+ T cells could be primed in vitro by C1R-E cells loaded with the Vbeta1 (C1R-E/V1) or Vbeta2 (C1R-E/V2) peptide to preferentially kill C1R-E cells loaded with the respective inducing Vbeta peptide, compared with targets loaded with the other peptides. Priming CD8+ T cells with untreated C1R-E cells did not induce Vbeta-specific CTLs. Of perhaps more physiological relevance was the finding that the CD8+ CTLs primed by C1R-E/V1 also preferentially killed activated autologous TCR Vbeta1+. Similar results were observed in reciprocal experiments using C1R-E/V2 for priming. Furthermore, anti-CD8 and anti-MHC class I mAbs inhibited this Vbeta-specific killing of C1R-E and CD4+ T cell targets. Taken together, the data provide evidence that certain TCR-Vbeta peptides can be presented by HLA-E to further induce Vbeta-specific CD8+ CTLs.  相似文献   

7.
8.
A comprehensive analysis of human alloimmune cytotoxic T lymphocytes (CTLs) specific for the HLA-A2 antigen identified 11% of HLA-A2 positive cells as outliers. In total, 11 unrelated serologically indistinguishable, but distinguishable by cell-mediated lympholysis (CML) HLA-A2 positive outlier cells were identified. The outlier cells could be subdivided in two subgroups according to reactivity patterns obtained with CTLs directed against the HLA-A2 antigen of outlier cells and their inhibitory capacity in specific competitive inhibition experiments. Thus, the serologically defined HLA-A2 specificity can be divided into at least three subtypes using CTLs specific for the HLA-A2 antigen. Moreover, CTLs specific for an HLA-A2 subtype could be induced when responder cells expressed a different HLA-A2 subtype antigen. On the basis of several family studies, we conclude that the subtype HLA-A2 antigens are inherited in a codominant way.  相似文献   

9.
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.  相似文献   

10.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

11.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

12.
Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3144–152 (FVGEFFTDV) and cytomegalovirus495–503 (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3144–152 and cytomegalovirus495–503 peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin257–264 peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors.  相似文献   

13.
Cytotoxic CD8+ T cells are key effectors in the immunotherapy of malignant and viral diseases. However, autologous T cell responses to tumor antigens presented by self-MHC are usually weak and ineffective. Allo-restricted T cells represent a potent source of tumor-specific T cells for adoptive immunotherapy. This study reports in vivo anti-melanoma efficacy of the pTRP2-specific allo-restricted CTLs expanded from the BALB/c splenocytes by multiple stimulations with aAPCs made by coating H-2Kb-Ig/pTRP2 dimeric complexes, anti-CD28 antibody, 4-1BBL molecules and CD83 molecules to cell-sized latex beads. The induced allo-restricted CTLs exhibited specific lysis against RMA-S cells pulsed with the peptide pTRP2 and H-2Kb+ melanoma cells expressing TRP2, while a murine Lewis lung carcinoma cell line 3LL could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-H-2Kb monoclonal antibody Y3. Adoptive transfer of the allo-restricted CTLs specific for malignant melanoma expanded by the aAPCs can mediate effective anti-melanoma response in vivo. These results suggested that the specific allo-restricted CTLs expanded by aAPCs coated with an MHC-Ig/peptide complex, anti-CD28 antibody, 4-1BBL and CD83 could be a potential option of specific immunotherapy for patients with malignant melanoma. X.-l. Lu and X.-b. Jiang have contributed equally to this work. An erratum to this article can be found at  相似文献   

14.
Experimental models indicate that tumor cells in suspension, unlike solid tumor fragments, might be unable to produce life-threatening cancer outgrowth when transferred to animal models, irrespective of the number of cells transferred, although they induce specific immune responses. Human tumor cells cultured in three dimensions display increased pro-angiogenic capacities and resistance to interferons, chemotherapeutic agents or irradiation, as compared with cells cultured in two-dimensional (2D) monolayers. Tumor cells cultured in three dimensions were also shown to be characterized by defective immune recognition by cytotoxic T lymphocytes (CTLs) specific for tumor-associated antigens (TAAs) and by a capacity to inhibit CTL proliferation and dendritic cell (DC) functions. Downregulation of human leukocyte antigen (HLA) or TAA expression and high production of lactic acid might play a role in the elicitation of these effects. Here, we propose that growth in 3D architectures might provide new insights into tumor immunology and could represent an integral missing component in pathophysiological tumor immune escape mechanisms.  相似文献   

15.
The ABCs of artificial antigen presentation   总被引:5,自引:0,他引:5  
Artificial antigen presentation aims to accelerate the establishment of therapeutic cellular immunity. Artificial antigen-presenting cells (AAPCs) and their cell-free substitutes are designed to stimulate the expansion and acquisition of optimal therapeutic features of T cells before therapeutic infusion, without the need for autologous antigen-presenting cells. Compelling recent advances include fibroblast AAPCs that process antigens, magnetic beads that are antigen specific, novel T-cell costimulatory combinations, the augmentation of therapeutic potency of adoptively transferred T lymphocytes by interleukin-15, and the safe use of dendritic cell-derived exosomes pulsed with tumor antigen. Whereas the safety and potency of the various systems warrant further preclinical and clinical studies, these emerging technologies are poised to have a major impact on adoptive T-cell therapy and the investigation of T cell-mediated immunity.  相似文献   

16.
HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein (MOMP) of Chlamydia trachomatis are present in the peripheral blood of humans who acquired genital tract infections with the organism. Three HLA-A2-restricted epitopes and two HLA-B51-restricted epitopes were identified in serovar E-MOMP. One of the five epitopes spans a variable segment of MOMP and is likely a serovar E-specific epitope. The other four epitopes are localized in constant segments and are C. trachomatis species specific. CTL populations specific for one or more of the four constant segment epitopes were isolated from all 10 infected subjects tested, regardless of infecting serovars, but from only one of seven uninfected subjects tested. The CTLs failed to recognize corresponding peptides derived from Chlamydia pneumoniae MOMP, further suggesting that they indeed resulted from genital tract infections with C. trachomatis. Significantly, ME180 human cervical epithelial cells productively infected with C. trachomatis were killed by the MOMP peptide-specific CTLs. Further investigations of the ability of such CTLs to lyse normal infected epithelial cells and their presence at inflamed sites in the genital tract will help understand the protective or pathological role of CTLs in chlamydial infections. The MOMP CTL epitopes may be explored as potential components of a subunit vaccine against sexually transmitted diseases caused by C. trachomatis. Moreover, the knowledge provided here will facilitate studies of HLA class I pathways of chlamydial Ag processing and presentation in physiologically relevant human APCs.  相似文献   

17.
The major subset of human blood gammadelta T lymphocytes expresses the variable-region genes Vgamma9 and Vdelta2. These cells recognize non-peptidic phosphoantigens that are present in some microbial extracts, as well as the beta(2)-microglobulin-deficient Burkitt's lymphoma Daudi. Most cytotoxic human Vgamma9/Vdelta2 T cells express inhibitory natural killer cell receptors for HLA class I that downmodulate the responses of the gammadelta T lymphocytes against HLA class I expressing cells. In this study we show that transfection of the human beta(2)-microglobulin cDNA into Daudi cells markedly inhibits the cytotoxic and proliferative responses of human Vgamma9/Vdelta2 T cells. This provides direct evidence that the "innate" specificity of human Vgamma9/Vdelta2 T-lymphocytes for Daudi cells is uncovered by the loss of beta(2)m by Daudi. However, Daudi cells that express HLA class I in association with mouse beta(2)m at the cell surface are recognized by human Vgamma9/Vdelta2 T cells close to the same degree as the parental HLA class I deficient Daudi cell line. Thus, proper conformation of the HLA class I molecules is required for binding to natural killer cell receptors. Cloning of the HLA class I A, B, and C molecules of Daudi cells and transfer of the individual HLA class I molecules of Daudi cells into the HLA class I deficient recipient cell lines.221 and C1R demonstrate that for some human gammadelta T-cell clones cytolysis can be entirely inhibited by single HLA class I alleles while for other clones single HLA class I alleles only partially inhibit cytotoxicity. Thus, most human Vgamma9/Vdelta2 T cells represent a population of killer cells that evolved like NK cells to destroy target cells that have lost expression of individual HLA class I molecules but with a specificity that is determined by the Vgamma9/Vdelta2 TCR.  相似文献   

18.
HLA multimers are now widely used to stain and sort CD8 T lymphocytes specific for epitopes from viral or tumoral antigens presented in an HLA class I context. However, the transfer of this technology to a clinical setting to obtain clinical grade CD8 T lymphocytes that may be used in adoptive cell transfer (ACT) is hindered by two main obstacles: the first obstacle is the use of streptavidin or derived products that are not available in clinical grade to multimerize HLA/peptide monomers and the second is the reported high degree of apoptosis that eventually occurs when T cell receptors are crosslinked by HLA multimers. In the present report, we describe new HLA multimers composed of immunomagnetic beads covalently coupled to a mAb specific for the AviTag peptide and coated with HLA/peptide monomers bearing the non biotinylated AviTag at the COOH terminus of the HLA heavy chain. Thus, all the components of this new reagent can be obtained in clinical grade. We compared these new multimers with the previously described multimers made with streptavidin beads coated with biotinylated HLA/peptide monomers, in terms of sorting efficiency, recovery of functional T cells, apoptosis and activation. We provide evidence that the new multimers could very efficiently sort pure populations of T lymphocytes specific for three different melanoma antigens (Melan-A, gp100 and NA17-A) after a single peptide stimulation of melanoma patients’ PBMC. The recovered specific T cells were cytotoxic against the relevant melanoma cell-lines and, in most cases, produced cytokines. In addition, in marked contrast with streptavidin-based multimers, our new multimers induced very little apoptosis or activation after binding specific T lymphocytes. Altogether, these new multimers fulfill all the necessary requirements to select clinical grade T lymphocytes and should facilitate the development of ACT protocols in cancer patients.  相似文献   

19.
We have explored further the basis for resistance of cloned cytotoxic T lymphocytes (CTLs) to cell-mediated cytotoxicity. We find that most cloned CTLs recognized as specific target cells by other cloned CTLs used as effector cells fail to activate three early events that may be critical in triggering lysis in the effector CTLs: Ca2+ influx, microtubule organizing center (MTOC) reorientation, and serine esterase release. To the extent that any or all of these events are involved in activation or expression of the lytic pathway in effector CTLs, our results suggest that in addition to being inherently resistant to cytotoxic granule extracts, many CTLs are also unable to induce lytic function in other (effector) CTLs. We have found one CTL clone that can respond to recognizable cloned CTL target cells with at least MTOC reorientation and serine esterase release, although the target CTLs are still not lysed. In this case, the resistance of the target CTL to lysis may be due solely to its resistance to cytoplasmic granule contents.  相似文献   

20.

Introduction

Lung cancer is the most common cancer worldwide. Every year, as many people die of lung cancer as of breast, colon and rectum cancers combined. Because most patients are being diagnosed in advanced, not resectable stages and therefore have a poor prognosis, there is an urgent need for alternative therapies. Since it has been demonstrated that a high number of tumor- and stromal-infiltrating cytotoxic T cells (CTLs) is associated with an increased disease-specific survival in lung cancer patients, it can be assumed that immunotherapy, e.g. peptide vaccines that are able to induce a CTL response against the tumor, might be a promising approach.

Methods

We analyzed surgically resected lung cancer tissues with respect to HLA class I- and II-presented peptides and gene expression profiles, aiming at the identification of (novel) tumor antigens. In addition, we tested the ability of HLA ligands derived from such antigens to generate a CTL response in healthy donors.

Results

Among 170 HLA ligands characterized, we were able to identify several potential targets for specific CTL recognition and to generate CD8+ T cells which were specific for peptides derived from cyclin D1 or protein-kinase, DNA-activated, catalytic polypeptide and lysed tumor cells loaded with peptide.

Conclusions

This is the first molecular analysis of HLA class I and II ligands ex vivo from human lung cancer tissues which reveals known and novel tumor antigens able to elicit a CTL response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号