首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this study, a novel sodium-dependent organic anion transporter (Soat) was identified. Soat is expressed in rat brain, heart, kidney, lung, muscle, spleen, testis, adrenal gland, small intestine, and colon. The Soat protein consists of 370 amino acids and shows 42% and 31% overall amino acid sequence identity to the ileal sodium-dependent bile acid transporter (Isbt) and the Na(+)/taurocholate cotransporting polypeptide (Ntcp), respectively. Soat is predicted to have nine transmembrane domains, with an N-terminus outside the cell and an intracellular C-terminus. The Soat gene is localized on chromosome 14 and is coded by six exons mapped in region 14p22. When expressed in Xenopus laevis oocytes, Soat shows transport function for estrone-3-sulfate (Km = 31 microM, Vmax = 5557 fmol/oocyte/30 min) and dehydroepiandrosterone sulfate (Km = 30 microM, Vmax = 5682 fmol/oocyte/30 min). Soat does not transport taurocholate, estradiol-17beta-glucuronide, nor ouabain.  相似文献   

2.
The mechanisms underlying the transport of bile acids by apical sodium-dependent bile acid transporter (Asbt) are not well defined. To further identify the functionally relevant residues, thirteen conserved negatively (Asp and Glu) and positively (Lys and Arg) charged residues plus Cys-270 of rat Asbt were replaced with Ala or Gln by site-directed mutagenesis. Seven of the fourteen residues of rat Asbt were identified as functionally important by taurocholate transport studies, substrate inhibition assays, confocal microscopy, and electrophysiological methods. The results showed that Asp-122, Lys-191, Lys-225, Lys-256, Glu-261, and Lys-312,Lys-313 residues of rat Asbt are critical for transport function and may determine substrate specificity. Arg-64 may be located at a different binding site to assist in interaction with non-bile acid organic anions. For bile acid transport by Asbt, Na(+) ion movement is a voltage-dependent process that tightly companied with taurocholate movement. Asp-122 and Glu-261 play a critical role in the interaction of a Na(+) ion and ligand with Asbt. Cys-270 is not essential for the transport process. These studies provide new details about the amino acid residues of Asbt involved in binding and transport of bile acids and Na(+).  相似文献   

3.
The Na+/H+ exchanger isoform 1 is an integral membrane protein that regulates intracellular pH. It extrudes 1 intracellular H+ in exchange for 1 extracellular Na+. It has 2 large domains, an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the critical transmembrane segment TM VII. Residues Leu 255, Leu 258, Glu 262, Leu 265, Asn 266, Asp 267, Val 269, Val 272, and Leu 273 were all mutated to cysteine residues in the cysteineless NHE1 isoform. Mutation of amino acids E262, N266, and D267 caused severe defects in activity and targeting of the intact full length protein. The balance of the active mutants were examined for sensitivity to the sulfhydryl reactive reagents, positively charged MTSET ((2- (trimethylammonium)ethyl)methanethiosulfonate) and negatively charged MTSES ((2-sulfonatoethyl)methanethiosulfonate). Leu 255 and Leu 258 were sensitive to MTSET but not to MTSES. The results suggest that these amino acids are pore-lining residues. We present a model of TM VII that shows that residues Leu 255, Leu 258, Glu 262, Asn 266, and Asp 267 lie near the same face of TM VII, lining the ion transduction pore.  相似文献   

4.
All cysteines of mouse ileal and hepatic sodium-dependent bile acid transporters (Isbt and Ntcp, respectively) were individually replaced by alanine. Replacement of Cys106 in Isbt and Cys96 in Ntcp, which are located closely in alignment, decreased taurocholate uptake. Although Cys51 in Isbt is conserved in Ntcp, the replacement spoiled Isbt only. Both similarity and difference in the arrangement of functional sites are suggested.  相似文献   

5.
To isolate the murine Na+/taurocholate cotransporting polypeptide (Ntcp), we screened a mouse liver cDNA library and identified Ntcp1, encoding a 362 amino acid protein and Ntcp2, encoding a 317 amino acid protein which had a shorter C-terminal end. Both isoforms mediated saturable Na+-dependent transport of taurocholate when expressed in Xenopus laevis oocytes. Analysis of the gene revealed that Ntcp2 is produced by alternative splicing where the last intron is retained.  相似文献   

6.
A 25 amino acid segment (Glu666-Pro691) of the II-III loop of the alpha1 subunit of the skeletal dihydropyridine receptor, but not the corresponding cardiac segment (Asp788-Pro814), activates skeletal ryanodine receptors. To identify the structural domains responsible for activation of skeletal ryanodine receptors, we systematically replaced amino acids of the cardiac II-III loop with their skeletal counterparts. A cluster of five basic residues of the skeletal II-III loop (681RKRRK685) was indispensable for activation of skeletal ryanodine receptors. In the cardiac segment, a negatively charged residue (Glu804) appears to diminish the electrostatic potential created by this basic cluster. In addition, Glu800 in the group of negatively charged residues 798EEEEE802 of the cardiac II-III loop may serve to prevent the binding of the activation domain.  相似文献   

7.
It has recently been shown that replacement of the border residues (Gln-111 and Asn-122) of the H1-H2 extracellular domain of the sheep Na,K-ATPase alpha subunit with the charged amino acids Arg and Asp generates a ouabain-resistant enzyme (Price, E. M. and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to further study structure-function relationships in Na,K-ATPase, six additional mutations have been made at these border positions. Two of these mutants were single amino acid substitutions (Gln-111 to Arg or Asn-122 to Asp). These mutations change one or the other H1-H2 border residue to a charged amino acid. The remaining substitutions were double mutants in which both of the H1-H2 border residues were simultaneously changed to charged amino acids. Changes were made which introduced either positively charged amino acids (Lys at positions 111 and 122), negatively charged amino acids (Glu at positions 111 and 122) or oppositely charged amino acids (Lys at position 111 and Glu at 122; Asp at position 111 and Arg at 122) at the borders of the H1-H2 extracellular domain. HeLa cells transfected with any of these sheep Na,K-ATPase alpha subunit mutants were able to grow in concentrations of ouabain that were toxic to untransfected cells or cells transfected with the wild type sheep alpha subunit. Crude membranes isolated from the transfectants were analyzed for ouabain inhibitable Na,K-ATPase activity. All of the transfectants contained a relatively ouabain-resistant component of enzyme activity, with the ouabain I50 values ranging from 4 x 10(-3) M to 1 x 10(-6) M. The most resistant enzyme was the double mutant that contained Asp at position 111 and Arg at 122, whereas the least resistant were the enzymes containing the single amino acid substitutions. There was no correlation between the type of charged amino acid present at the border position and the degree of ouabain resistance. These data demonstrate the functional importance, in terms of ouabain binding, of the border positions of the H1-H2 extracellular domain of the Na,K-ATPase alpha subunit.  相似文献   

8.
The Mg2+ concentrations required for half maximal activity, the dissociation constants, and the free energies of binding for Mg2+ bound to wild type beta-galactosidase and several site specific mutants are reported. The mutants have one of the following substitutions: Glu-461 substituted with Asp, Gln, Gly, His, or Lys; or Tyr-503 substituted with Phe, His or Cys. Substitutions for Tyr-503 had little effect on the affinity of the enzyme for Mg2+, implying that Tyr-503 is not involved in Mg2+ binding. Neutrally charged amino acids substituted for the negatively charged Glu-461 significantly decreased the affinity of the enzyme for Mg2+ and substitution of positively charged amino acids at this position further decreased the affinity. On the other hand, substitution by Asp (negative charge) at position 461 had no effect on the binding. Thus, the negatively charged side chain of Glu-461 is important for divalent cation binding to beta-galactosidase.  相似文献   

9.
In mammalian striated muscles, ryanodine receptor (RyR), triadin, junctin, and calsequestrin form a quaternary complex in the lumen of sarcoplasmic reticulum. Such intermolecular interactions contribute not only to the passive buffering of sarcoplasmic reticulum luminal Ca2+, but also to the active Ca2+ release process during excitation-contraction coupling. Here we tested the hypothesis that specific charged amino acids within the luminal portion of RyR mediate its direct interaction with triadin. Using in vitro binding assay and site-directed mutagenesis, we found that the second intraluminal loop of the skeletal muscle RyR1 (amino acids 4860-4917), but not the first intraluminal loop of RyR1 (amino acids 4581-4640) could bind triadin. Specifically, three negatively charged residues Asp4878, Asp4907, and Glu4908 appear to be critical for the association with triadin. Using deletional approaches, we showed that a KEKE motif of triadin (amino acids 200-232) is essential for the binding to RyR1. Because the second intraluminal loop of RyR has been previously shown to contain the ion-conducting pore as well as the selectivity filter of the Ca2+ release channel, and Asp4878, Asp4907, and Glu4908 residues are predicted to locate at the periphery of the pore assembly of the channel, our data suggest that a physical interaction between RyR1 and triadin could play an active role in the overall Ca2+ release process of excitation-contraction coupling in muscle cells.  相似文献   

10.
Clostridium botulinum C2 toxin belongs to the family of binary AB type toxins that are structurally organized into distinct enzyme (A, C2I) and binding (B, C2II) components. The proteolytically activated 60-kDa C2II binding component is essential for C2I transport into target cells. It oligomerizes into heptamers and forms channels in lipid bilayer membranes. The C2II channel is cation-selective and can be blocked by chloroquine and related compounds. Residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which has been implicated in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation. In the present study, C2II mutants created by substitution of different negatively charged amino acids by alanine-scanning mutagenesis were analyzed in artificial lipid bilayer membranes. The results suggested that most of the C2II mutants formed SDS-resistant oligomers (heptamers) similar to wild type. The mutated negatively charged amino acids did not influence channel properties with the exception of Glu(399) and Asp(426), which are probably localized in the vestibule near the channel entrance. These mutants show a dramatic decrease in their affinity for binding of chloroquine and its analogues. Similarly, F428A, which represents the Phi-clamp in anthrax protective antigen, was mutated in C2II in several other amino acids. The C2II mutants F428A, F428D, F428Y, and F428W not only showed altered chloroquine binding but also had drastically changed single channel properties. The results suggest that amino acids Glu(399), Asp(426), and Phe(428) have a major impact on the function of C2II as a binding protein for C2I delivery into target cells.  相似文献   

11.
A molecular model of Antarctic krill euphauserase based on the known crystal structure of its fiddler crab analog, collagenase I, indicates that the core structure of these enzymes is almost identical. Euphauserase is a cold-active and thermally sensitive enzyme with a high affinity for Lys, Arg and large hydrophobic amino acids. Residue Phe137 in euphauserase, localized in loop D (autolysis loop), is highly exposed on the surface of the molecule. Therefore, it appeared to be an easy target for autolysis. The broadly specific euphauserase has a low affinity for negatively charged residues. In order to increase the stability of the enzyme, two mutants were created in which residue Phe137 was replaced by a Glu and an Asp residue. Both mutations resulted in increased stability of the recombinant euphauserase towards thermal inactivation.  相似文献   

12.
ABSTRACT ABSTRACT Lysozyme, the bacteriolytic enzyme, is one of the factors of the innate immunity in insects. A cDNA sequence encoding a lysozyme was isolated from the fat bodies of sweet potato hornworm, Agrius convolvuli immunized with E. coli K12 D21. The coding region of this lysozyme consists of a 19 residues signal peptide and a 120 residues mature protein, which is very similar to that of other lepidopteran. Thirteen negatively (Asp and Glu) and twenty two positively (Arg, Lys and His) charged amino acids were found in this sequence. Eight Cys residues were conserved in the same positions of other insect lysozymes.  相似文献   

13.
His296 of Zymomonas mobilis levansucrase (EC 2.4.1.10) is crucial for the catalysis of the transfructosylation reaction. The three-dimensional structures of levansucrases revealed the His296 is involved in the substrate recognition and binding. In this study, nine mutants were created by site-directed mutagenesis, in which His296 was substituted with amino acids of different polarity, charge and length. The substitutions of His296 with Arg or Trp retained partial hydrolysis and transfructosylation activities. The positively charged Lys substitution resulted in a 2.5-fold increase of sucrose hydrolysis. Substitutions with short (Cys or Ser), negatively charged (Glu) or polar (Tyr) amino acids virtually abolished both the activities. Analysis of transfructosylation products indicated that the mutants synthesized different oligosaccharides, suggesting that amino acid substitutions of His296 strongly affected both the enzyme activity and transfructosylation products.  相似文献   

14.
The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a “440 rule” can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env determinants outside V3 can improve the reliability of coreceptor usage prediction algorithms.  相似文献   

15.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

16.
To examine the amino-terminal sequence requirements for cotranslational protein N-myristoylation, a series of site-directed mutagenesis of N-terminal region were performed using tumor necrosis factor as a nonmyristoylated model protein. Subsequently, the susceptibility of these mutants to protein N-myristoylation was evaluated by metabolic labeling in an in vitro translation system or in transfected cells. It was found that the amino acid residue at position 3 in an N-myristoylation consensus motif, Met-Gly-X-X-X-Ser-X-X-X, strongly affected the susceptibility of the protein to two different cotranslational protein modifications, N-myristoylation and N-acetylation; 10 amino acids (Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, and His) with a radius of gyration smaller than 1.80 A directed N-myristoylation, two negatively charged residues (Asp and Glu) directed N-acetylation, and two amino acids (Gly and Met) directed heterogeneous modification with both N-myristoylation and N-acetylation. The amino acid requirements at this position for the two modifications were dramatically changed when Ser at position 6 in the consensus motif was replaced with Ala. Thus, the amino acid residue penultimate to the N-terminal Gly residue strongly affected two cotranslational protein modifications, N-myristoylation and N-acetylation, and the amino acid requirements at this position for these two modifications were significantly affected by downstream residues.  相似文献   

17.
台湾家白蚁内切葡聚糖酶活性中心氨基酸的饱和突变   总被引:1,自引:0,他引:1  
对内切葡聚糖酶的功能改进一直是纤维素酶研究领域的焦点。本研究对台湾家白蚁内切葡聚糖酶(CfEG)的活性位点做了饱和突变。首先,以PDB数据库中高山象白蚁内切葡聚糖酶(NtEG)的三维结构(PDB id=1ks8)为模板,对CfEG进行三维结构同源建模,二者序列一致性高达79%。位于CfEG活性中心的D53、D56、E411,分别与NtEG的催化残基D54、D57、E412重合。用简并引物对CfEG的假定活性位点D53、D56、E411进行定点饱和突变。在位点D53、D56各筛选到羧甲基纤维素酶活有一定提高的突变子D53E、D56C,其中D56C的Km值减小为原始酶的三分之一。双突变子D53L/D56I的比活比原始酶提高了近2倍,同时Km值减小至原始酶的一半。而E411的饱和突变子库均没有活性,进一步将其替换为近似氨基酸的E411D、E411Q定点突变子也丧失了酶活。由突变结果可推断,位点E411为该酶行使功能的必需残基。  相似文献   

18.
Katancik JA  Sharma A  de Nardin E 《Cytokine》2000,12(10):1480-1488
The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROalpha) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Asp9, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROalpha. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROalpha to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding.  相似文献   

19.
Permeases of the equilibrative nucleoside transporter family mediate the uptake of nucleosides and/or nucleobases in a diverse array of eukaryotes and transport a host of drugs used for treatment of cancer, heart disease, AIDS, and parasitic infections. To identify residues that play central roles in transport function, we have systematically substituted by site-directed mutagenesis all the charged residues located within predicted transmembrane domains of the Leishmania donovani nucleoside transporter 1.1, LdNT1.1, which transports adenosine and the pyrimidine nucleosides. Substitution of three of these ten residues by uncharged amino acids resulted in loss of >95% transport activity, and we hence designated them "key" residues. These amino acids were Glu94, Lys153, and Arg404 located in transmembrane domains 2, 4, and 9, respectively. In addition, previous studies on the related LdNT2 inosine/guanosine transporter identified the highly conserved Asp389 and Arg393 (equivalent to Asp374 and Arg378 in LdNT1.1) in transmembrane domain 8 as key residues. Among these residues, the mutants in Arg393 (LdNT2) and Arg404 were strongly impaired in trafficking to the plasma membrane, but the other mutants were expressed with high to moderate efficiency at the cell surface, indicating that their mutation impaired transport activity per se. A conservative K153R substitution exhibited a change in substrate specificity, acquiring the ability to transport inosine, a nucleoside that is not a substrate for the wild-type LdNT1.1 permease. These results imply that the Glu94, Lys153, and Asp374 residues may play central roles in the mechanism of substrate translocation in LdNT1.1.  相似文献   

20.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号