首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Rates of insect capture increased with leaf area in the insectivorous plant Drosera rotundifolia, and growth of new leaves was related to insect capture. However, increased leaf growth was counterbalanced by leaf abscission which was in turn related to insect capture and leaf growth. Leaf loss equaled leaf growth in plants having natural rate of insect capture. A large proportion of the nitrogen gain from prey was stored in the hypocotyl; it was estimated from feeding experiments that about 24% to 30% of the nitrogen stored in the hypocotyl after winter originated from insect capture in the previous season. The effect of insect capture is discussed in relation to the life cycle of Drosera.  相似文献   

2.
Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolytic activity of leaf exudates, indicating that the reaction of sundew leaves depends on the molecular nature of the inducer applied. In situ hybridization of sundew leaves with a Drosera chitinase probe showed chitinase gene expression in different cell types of non-treated leaves, but not in the secretory cells of the glandular heads. Upon induction, chitinase mRNA was also present in the secretory cells of the sundew leaf. The combined results indicate that chitinase is likely to be involved in the decomposition of insect prey by carnivorous plants. This adds a novel role to the already broad function of chitinases in the plant kingdom and may contribute to our understanding of the molecular mechanisms behind the ecological success of carnivorous plants in nutritionally poor environments.  相似文献   

3.
Summary Growth responses and accumulation of N and P were studied in two pygmy south-west Australian species of Drosera following supplementary feeding of arthropods (collembolans, Hypogastrura vernalis and fruit flies, Drosophila melanogaster) and/or a balanced mineral nutrient supplement (N as nitrate) via the roots. One feeding experiment used glasshouse-raised germlings from vegetative propagules (gemmae) of the perennial Drosera closterostigma, the other three (two on D. closterostigma and one on the annual D. glanduligera) involved natural populations engaging in natural captures of indigenous prey. All experiments recorded highly significant increases in plant dry matter, N and P (all plant age groups) and in reproductive performance (adult plants only) from artificial feeding of arthropods, but no apparent benefits from minerals alone or additive effects of minerals above that due to insects. Unresponsiveness to mineral nutrients was suggested to relate to inability of the species to use nitrate, while up to three-fold growth and nutrient uptake response to insects indicated that growth of natural populations might be severely limited by inadequate catches of prey. It is concluded that the highly nutrient-poor conditions typical of the habitat of pygmy species of Drosera may have promoted marked specialization towards carnivory and an attendant decline in ability to utilize soil-derived sources of nutrients.  相似文献   

4.
Uptake of nitrogen from prey and substrate and partitioning of prey-derived nitrogen were studied in the carnivorous plant species Pinguicula alpina, P. villosa, P. vulgaris and Drosera rotundifolia in a subarctic environment. Efficiency in nitrogen uptake from prey was evaluated by tracing 15N from 15N-enriched Drosophila flies fed to the plants. The in situ uptake efficiency differed somewhat between species and ranged from 29 to 41% of prey N. This efficiency was not affected by different feeding levels or plant reproductive status (flowering or non-flowering). A test of the amount of N absorbed from prey caught on flower stalks of Pinguicula villosa and P. vulgaris showed that both species took up little of what was available in prey (2.5% or less). The uptake efficiency found in greenhouse grown plants was higher than in plants in situ (40–50% vs. 30–40% respectively). This could probably best be explained by the absence of rain and a higher temperature in the greenhouse. The prey-derived 15N was traced to reproductive organs and winter buds. Non-flowering individuals allocated 58–97% of the N derived from prey to their winter buds. Flowering individuals allocated 17–43% of the N income from prey to reproduction, while 34–71% were allocated to buds. Root uptake of nitrogen was stimulated by increased prey capture. This increase in uptake of nitrogen from the substrate was larger than the potential direct uptake of nitrogen from captured prey.  相似文献   

5.
Field observations on the biology ofMetriona elatior (Col.: Chrysomelidae) onSolanum elaeagnifolium (Solanaceae) from Uruguay. Specimens ofMetriona elatior were found feeding on leaves of the silverleaf nightshade,Solanum elaeagnifolium, from the eastern of Uruguay since 1984. According to a field study the young leaves were skeletonized since spring to early autumn by larvae and adults. Oothecae and pupae were found mainly on old leaves. The egg mean volume was of 0.614 mm3. Young plants of the weed were always killed after massive natural infections ofM. elatior. Therefore, this tortoise leaf-beetle may be studied as a potential biocontrol agent on populations ofS. elaeagnifolium.
  相似文献   

6.
Leaves of Quercus coccinea, Q. alba, and Pinus rigida were collected at six dates during the growing season and analyzed for N, P, K, Ca, Mg, Fe, S, and Na. Leaf weights per unit of leaf area (or length) were determined for the same period. Quercus coccinea and Q. alba leaves increased in weight per unit area by about 30 % and 50 %, respectively. First-year pine leaves increased in weight per unit length by about 65 %. During the second year the weight of pine leaves changed little. Two broad patterns in the nutrient content of leaves were apparent when nutrient content was expressed on the basis of leaf area rather than leaf weight. N, P, and K concentrations increased to a peak in mid- or late summer and declined abruptly just prior to abscission. Concentrations of other elements tended to rise slowly throughout the life of the leaves in all three species. The differences among nutrients and among species support the hypothesis that differential partitioning of the nutrient pool occurs as a result of evolutionary adaptation. The changes in weight of leaves per unit area and in nutrient content during the growing season are important for studies of net primary production and in appraisals of the cycling of nutrients. Least distortion of nutrient relationships occurs when area or length of leaf is used as the basis for expression of nutrient content.  相似文献   

7.
Some predatory animals, represented by large carnivores, forage in groups and benefit from this behavior. We tested the hypothesis that carnivorous plants also benefit from group foraging to improve the efficiency of trapping large prey using Drosera makinoi (Droseraceae). As a result of our field observations, it was found that larger neighboring D. makinoi density yields a greater number of large preys (≥3 mm) and total prey biomass per plant. Results showed that a total of 43.4% of the events to trap large prey was achieved by two trap leaves belonging to two neighboring D. makinoi plants. Our results proved that group foraging in D. makinoi enables them to trap large prey.  相似文献   

8.
Carnivorous sundew plants catch and digest insect prey for their own nutrition. The sundew species Drosera capensis shows a pronounced leaf bending reaction upon prey capture in order to form an ‘outer stomach’. This formation is triggered by jasmonates, phytohormones typically involved in defence reactions against herbivory and wounding. Whether jasmonates still have this function in D. capensis in addition to mediating the leaf bending reaction was investigated here. Wounded, insect prey‐fed and insect‐derived oral secretion‐treated leaves of D. capensis were analysed for jasmonates (jasmonic acid, JA; jasmonic acid‐isoleucine conjugate, JA‐Ile) using LC‐MS/MS. Prey‐induced jasmonate accumulation in D. capensis leaves was persistent, and showed high levels of JA and JA‐Ile (575 and 55.7 pmol·g·FW?1, respectively), whereas wounding induced a transient increase of JA (maximum 500 pmol·g·FW?1) and only low (3.1 pmol·g·FW?1) accumulation of JA‐Ile. Herbivory, mimicked with a combined treatment of wounding plus oral secretion (W+OS) obtained from Spodoptera littoralis larvae induced both JA (4000 pmol·g·FW?1) and JA‐Ile (25 pmol·g·FW?1) accumulation, with kinetics similar to prey treatment. Only prey and W+OS, but not wounding alone or OS, induced leaf bending. The results indicate that both mechanical and chemical stimuli trigger JA and JA‐Ile synthesis. Differences in kinetics and induced jasmonate levels suggest different sensing and signalling events upon injury and insect‐dependent challenge. Thus, in Drosera, jasmonates are still part of the response to wounding. Jasmonates are also employed in insect‐induced reactions, including responses to herbivory and carnivory.  相似文献   

9.
Competitive interactions in arthropod predators are well-known, but positive interactions have received less attention. The two-spotted stinkbugPerillus bioculatus often feeds gregariously on leaf beetle larvae and caterpillar prey. Consequences of prey sharing amongP. bioculatus conspecifics of dissimilar size (instar) was studied using Colorado potato beetle (CPB) prey. Rearing second-instar (N2) nymphs ofP. bioculatus with an N5 conspecific facilitated early feeding on L4 CPB larvae (a difficult prey to handle by N2 nymphs but not by N5’s), thus increasing survival and accelerating development. One in every 20 cases ofP. bioculatus foraging in the field was accounted for by pairs or small groups of mostly feeding individuals. CPB egg masses and L4’s represented a disproportionate number of cases of aggregated feeding byP. bioculatus, compared to feeding singly. Small CPB larvae decreased in the diet of aggregated stinkbugs compared to L4 larvae and egg masses, suggesting that sharing these prey may be favorable or unavoidable. In a field test measuring residence/survival of N2’s limited to L4 prey, the N2’s rate of residence/survival increased significantly when large nymphs acting as food providers were also present. The function of communal feeding inP. bioculatus is discussed, as well as the potential for greater impact on prey density that may be expected from tolerance to opportunistic feeding by conspecifics in slightly gregarious predators.  相似文献   

10.
Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew’s enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant’s metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding.  相似文献   

11.
Observations were made on the feeding behavior of the two main phytoseiid species in Spanish Citrus orchards,Euseius stipulatus (Athias-Henriot) andTyphlodromus phialatus Athias-henriot. The experiences were carried out by rearing the predatory mites on excised orange leaves, and always with an excess of the prey the Citrus Red Mite (=CRM)Panonychus citri (McGregor). In experiments with all stages of CRM, the number of prey killed per hour was 5.12 and 2.00, the percentage of successful attacks, 58% and 21%, and the mean time spent feeding on each prey was 5.1 and 12.2 minutes for starving females ofE. stipulatus andT. phialatus respectively.E. stipulatus feeds on all stages of the prey except eggs, andT. philatus, on all stages, except males. Both species attack much less successfully females ofP. citri rather than immatures. In experiments with adult females and eggs ofP. citri as prey, the mean number of prey killed daily was 4.51 females forE. stipulatus, and 2.01 females and 2.12 eggs forT. philatus. Considering this killing rate and the number of eggs laid by the predators in the same period, it can be concluded thatE. stipulatus consumes only 30% of the content of the preys killed, whereasT. philatus consumes a percentage of prey variable between individuals and ranging from 40% to 100%. These differences in feeding behavior between the two species could partly explain differences in their efficiency as biocontrol agents ofP. citri observed in the field.   相似文献   

12.
The life history of three populations ofProtohermes grandis and two populations ofProtohermes immaculatus (Megaloptera: Corydalidae) was compared. In general, the larvae lived in stream riffles for 2 years and the adults appeared in summer. Adult body size differed between these closely related species and also between the populations ofP. grandis. Dwarfism occurred inP. immaculatus, a species that is endemic to the small, isolated island, Amami Island. The population ofP. grandis on Yaku Island, located between Amami Island and the mainland Kyushu, had an intermediate body size between that ofP. immaculatus and the mainland population ofP. grandis. Despite being an insular population,P. grandis on Tsushima Island had a similar body size to mainlandP. grandis. In these populations with large adults, some larvae lived in the streams for 3 years. The size distribution of benthic animals, which are the prey available toProtohermes larvae, differed between the streams studied. The density of large prey was lowest on Amami Island, intermediate on Yaku Island, and highest on the mainland and Tsushima Island. Different size distributions of available prey may be caused by the differences of benthic fauna; most of Ecdyonuridae and Ephemerellidae (large mayflies) and Perlidae (large stoneflies) were not found on Amami and Yaku Islands. Thus, there is a tendency to dwarfism in the populations ofProtobermes inhabiting streams where the density of large prey is low.  相似文献   

13.
Synopsis Recent work on secretion in plants is reviewed, with emphasis on the anatomy and physiology of root cap cells in higher plants, the stalked glands ofDrosera capensis, and the secretory mechanism ofDionaea muscipula. Cells of the root cap of higher plants switch from a geo-perceptive role to one of mucilage secretion at maturation. Features of this process, the role of the Golgi and the pathway for mucilage distribution are reviewed. In contrast, the stalked glands of the leaves ofDrosera capensis are much longer lived and have a complex anatomy. The mechanisms for mucilage secretion, protein absorption and the role of the cell membranes in the internal secretion of the protein are described, using data from X-ray microscopv. The secretion of fluid and protein byDionaea is stimulated by various nitrogen-containing compounds. Uric acid, often excreted by captured insects, is particularly effective in this respect.  相似文献   

14.
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.  相似文献   

15.
The compartmentation and metabolism of indole-3-acetic acid (IAA) was examined in protoplasts derived from needles ofPinus sylvestris L., leaves of normal plants ofNicotiana tabacum L., leaves ofN. tabacum plants carrying the T-DNA gene 1 (rG1 plants) and leaves ofN. tabacum plants carrying the T-DNA gene 2 (rG2 plants) by using a rapid cell-fractionation method. In all tissues, 30%–40% of the IAA pool was located in the chloroplast, while the remainder was found in the cytosol. Quantitative analysis of indole-3-ethanol (IEt) showed that in bothPinus andNicotiana the IEt pool was located exclusively in the cytosol. The only plant that contained endogenous indoleacetamide (IAAm) was therG1-mutant ofN. tabacum, expressing theAgrobacterium tumefaciens T-DNA gene 1. Cellular fractionation of protoplasts from this transgenic plant showed that the entire IAAm pool was located in the cytosol. Feeding experiments utilizing [5-3H]tryptophan, [5-3H]IEt, [1′-14C] and [2′-14C]IAA demonstrated that the biosynthesis and catabolism of IAA occurred in the cytosol in bothPinus and in the wild type and the different mutants ofNicotiana. Furthermore, the biosynthesis of IAAm in therG1 plants was also shown to be localized in the cytosol.  相似文献   

16.
We studied the physical and temporal isolation of two arthropod guilds interacting with Drosera anglica Huds., a terrestrial carnivorous plant. Flowers are separated from basal trap leaves by a leafless stalk. Since arthropods are potentially employed both as prey and pollinators, we asked whether separation of traps from flowers reduces the frequency with which flower visitors are captured by the leaves. Plants captured prey throughout the season, with peak trapping activity occurring before flowering began. The diverse prey spectrum included at least 109 species in 94 genera in 26 of 37 identified families representing 11 arthropod orders. The most common prey were adult flies of Nematocera, particularly Ceratopogonidae (50%) and Chironomidae (42%). The following taxa were periodically abundant: Acarina, Diptera–Cecidomyiidae, Chloropidae, Sciaridae, Hemiptera nymphs and Thysanoptera–Thripidae. Flies (Diptera) were chief flower visitors (95%), dominated by Syrphidae (66%), Bombyliidae and Muscidae (10% each), Calliphoridae (7%), Tachinidae and Dolichopodidae (3% each). Additionally, visitors were a bee (Hymenoptera–Halictidae) and thrips (Thysanoptera–Thripidae). Four families were common to both guilds: Diptera–Dolichopodidae, Muscidae, Tachinidae; and Thysanoptera–Thripidae. However, direct comparisons of identified taxa within these families showed that overlap between flower visitors and prey occurred for Thrips sp. larvae alone, which comprised only 3% of all flower visitors and 0.5% of prey. Drosera anglica exploits distinct guilds of insects for pollinators and prey.  相似文献   

17.
18.
Two subspecies of the predatory aquatic salamanderNotophthalmus, N. viridescens viridescens andN. v. dorsalis, differ in adult body size and geographic distribution. We tested whether experimental populations of the two predator subspecies differed in their effects on prey populations ofB. americanus, and whether observed differences in predator body size were genetic and/or environmentally induced. We compared the effects of predation by bothNotophthalmus subspecies on larvalBufo americanus by experimentally manipulating the densities (0, 2, or 4 newts/m3) and subspecies ofNotophthalmus (N. v. viridescens orN. v. dorsalis) added to artificial ponds. BothNotophthalmus subspecies significantly reducedB. americanus survival, but differed significantly in this effect. FewerBufo survived with the larger subspecies,N. v. viridescens, than with the smallerNotophthalmus subspecies,N. v. dorsalis. TheNotophthalmus subspecies differed in their patterns of adult and larval growth. Adults of the smaller subspecies,N. v. dorsalis, had a significantly higher growth rate than the larger subspecies,N. v. viridescens, under common environmental conditions, suggesting that differences in predator size were partly genetic, rather than entirely environmentally induced. LarvalN. v. dorsalis metamorphosed significantly later in the season than larvae ofN. v. viridescens, suggesting that larvalN. v. dorsalis had a lower growth rate than larvalN. v. viridescens. Differences in adult and larval growth, together with differences in the minimum adult size observed in natural populations, suggest that differences in the rate or duration of pre-adult growth may contribute substantially to observed differences in size.  相似文献   

19.
Nuphar (Nymphaeaceae) comprises a small holarctic group of aquatic perennials whose flowers are pollinated by flies, bees, and beetles. We studied pollination in different populations of the two European speciesN. lutea andN. pumila in Norway and in Germany. Flowers are self-compatible and protogynous, preventing automatic selfing, and insect pollination is required for seed production. Sympatric populations were studied in Vest-Agder county in Norway to determine whetherN. lutea andN. pumila have the same or different pollinators. Allopatric populations ofN. lutea in Germany and Norway were then compared to determine whether their pollinator spectra differ as would be expected in an open flower with seemingly easily accessible pollen and nectar. Results of the present as well as previous studies of the pollination ofN. lutea andN. pumila show that both species are mainly pollinated by flies, including apparentNuphar specialists, such as the scatophagidHydromyza livens and the ephydridsHydrellia andNotiphila, the last also a long-known pollinator ofN. advena in Florida. Pollinator overlap between sympatric heterospecific populations was small, while allopatric conspecific populations had similar visitor and pollinator spectra. We found no evidence of pollination byDonacia beetles as reported from some North American populations ofNuphar. Dedicated to Univ.-Prof. DrF. Ehrendorfer on the occasion of his 70th birthday  相似文献   

20.
It has been sustained that the sticky traps present in some carnivorous plants could have evolved from ancestor species bearing leaves covered with secreting glands formerly associated with a defensive function. In this study, we evaluated the interaction of the carnivorous plant Pinguicula moranensis with its insect herbivores to assess the defensive role of the glandular trichomes. Firstly, we estimated the standing levels of insect herbivory in field conditions. We also evaluated the response of herbivore insects to the removal of the secreting glands from the leaves of P. moranensis in field and laboratory conditions. The mean damage was 1.61%, and half of the sampled plants showed no damage. The low level of herbivory in the field suggests that P. moranensis has an efficient defense ability. In the field experiment, after 25 d of exposure to natural damage, treated glandless plants received 18 times more damage than control plants. In the laboratory, the consumption of glandless tissue was three times higher during a 6 h evaluation period. Overall, our results provide evidence that secreting trichomes in Pinguicula are not only associated with prey capture but also have a defensive role. The defensive function could have favored the evolution of the sticky traps, the most extended prey‐capture strategy among carnivorous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号